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Abstract

We develop a theory that ties the expressiveness of mechanisms to their efficiency. We introduce

two notions of expressiveness, impact dimension and outcome shattering. We show that an upper

bound on the expected efficiency of any mechanism increases strictly as more expressiveness is

allowed, and prove that a small increase in expressiveness can lead to an arbitrarily large increase

in the bound. We also show that in any private values setting the bound can be implemented with

a budget-balanced mechanism in Bayes-Nash equilibrium. However, without full expressiveness

dominant-strategy implementation is not always possible. We then discuss the relationship between

expressiveness and communication complexity, and conclude with a study of a mechanism class we

call channel based, which subsume most combinatorial and multi-attribute allocation mechanisms

and any Vickrey-Clarke-Groves mechanism. We show how our expressiveness notions can be used to

characterize the often-studied exposure problem faced by participants in channel-based mechanisms

that do not allow rich combinatorial expressions. Using our theoretical framework, we are able to

prove that this problem can result in arbitrary inefficiency.
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1 Introduction

A recent trend in the world—especially in electronic commerce—is a demand for higher levels of

expressiveness in mechanisms that mediate interactions, such as the allocation of resources or match-

ing of peers. The most famous expressive mechanism is a combinatorial auction (CA), which allows

participants to express valuations over packages of items [23, 58]. CAs have the recognized benefit

of removing the exposure problem, which bidders face when they have preferences over packages but,

in traditional auctions, are allowed to submit bids on individual items only. In such traditional inex-

pressive auctions, when bidding on an item, a given bidder needs to speculate how others will bid on

other items, since this will affect which bundles the bidder can construct and at what prices. As we

will show in this paper, uncertainty about the others’ preferences does, in fact, increase the need for

expressiveness, and, conversely, at a fixed level of expressiveness, greater uncertainty leads to reduced

efficiency. CAs also have other acknowledged benefits, and preference expression forms significantly

more compact and more natural than package bidding have been developed (e.g., [23, 33, 63, 65, 66]).

Expressiveness also plays a key role in multi-attribute settings where participants can express

preferences over vectors of attributes of the item or, more generally, of the outcome. Some mar-

ket designs are both combinatorial and multi-attribute (e.g., [23, 63, 65, 66]). CAs, multi-attribute

auctions, and generalizations thereof are used to trade tens of billions of dollars worth of items

annually [23, 33, 47, 63, 65]. The trend toward more expressiveness is also reflected in the richness

of preference expression now offered by businesses as diverse as retail sites, like Amazon and Net-

flix, and advertising services such as those in sponsored search auctions (e.g., [12, 26]) and display

advertising mechanisms (e.g., [17, 73]).

Intuitively, one might think that more expressiveness leads to higher efficiency (sum of the agents’

utilities)—for example, due to better matching of supply and demand. Efficiency improvements have

indeed been reported from combinatorial multi-attribute auctions (e.g., [23, 62, 63, 65]) and expres-

sive auctions for advertisement allocation [12, 17, 26]. However, until now we have lacked a general

way of characterizing the expressiveness of different mechanisms, the impact the expressiveness has

on the agents’ strategies, and, thereby, the outcome of the mechanism. For example, it was not

previously known whether there existed a single setting where more expressiveness could always be

used to achieve a more efficient outcome. In fact, on the contrary, it has been observed that in

certain settings additional expressiveness can give rise to additional equilibria of poor efficiency [48].

Finally, it is not obvious that more expressiveness should always yield benefits, since certain natural

increases in an auction’s expressiveness can lead to a reduction in the auctioneer’s revenue.1

Short of empirical tweaking, mechanism designers lack results they can rely on to determine how

much—and what forms of—expressiveness they need. These questions have vexed mechanism design

theorists, but are not only theoretical in nature. Answers could ensure that ballots are expressed in
1For example, consider an auction for an apple and an orange with two bidders, one who wants the apple and

another who wants the orange. Running a fully expressive combinatorial auction would yield no revenue because the

two bidders would not need to compete. On the other hand, running an inexpressive auction where bids are considered

only for the bundle of the two items would induce competition, and thus yield some revenue.
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a form that matches the issues voters care about, that companies are able to identify suppliers that

best match their needs, that supply and demand are better matched in B2C and C2C markets, and

so on.

In this paper, we develop a theory that ties the expressiveness of mechanisms to their efficiency in

a domain-independent manner. We begin in Section 2 by introducing two notions of expressiveness:

i) impact dimension, which captures the extent to which an individual agent can impact the mecha-

nism’s outcome, and ii) outcome shattering, which is based on the concept of shattering, a measure

of functional complexity from computational learning theory. We refer to increases (or decreases) in

these measures as increases (or decreases) in expressiveness.

In Section 3, we derive an upper bound on the expected efficiency of any mechanism under its

most efficient Bayes-Nash equilibrium. We show that in any setting the bound of an optimally

designed mechanism increases strictly as more expressiveness is allowed and, for some distributions

over agent valuations, by an arbitrarily large amount via a small increase in expressiveness. We

also prove that in any private values setting (i.e., where an agent’s utility depends only on its own

private information and not the private information of any other agent) the bound is tight in that

it is always possible to achieve its efficiency with a budget balanced mechanism in Bayes-Nash

equilibrium. Taken together, these results imply that for any private values setting the expected

efficiency of the best Bayes-Nash equilibrium increases strictly as more expressiveness is allowed.

Interestingly, unlike with full expressiveness, implementing this bound is not always possible in

dominant strategies.

In Section 4, we explore the relationship between our expressiveness measures and more tradi-

tional notions of communication complexity, such as the amount of information agents must transmit.

Specifically, we show that our expressiveness measures can be used to derive both upper and lower

bounds on the number of bits needed by the best multi-party communication protocol for computing

a given outcome function.

Finally, we study a class of mechanisms which we call channel based. They subsume most com-

binatorial allocation mechanisms (of which CAs and multi-attribute auctions are a subset) and any

Vickrey-Clarke-Groves (VCG) scheme [19, 28, 72]. We show that our domain-independent measures

of expressiveness appropriately relate to the natural measure of expressiveness for channel-based

mechanisms: the number of channels allowed (which itself generalizes a classic measure of expres-

siveness in CAs called k-wise dependence [22]). Using this bridge, our general results yield interesting

implications. For example, we prove that for any (channel-based) combinatorial allocation mech-

anism that does not allow rich combinatorial bids there exist distributions over agent valuations

(even distributions satisfying the free disposal condition, i.e., where the utility of winning an extra

item is always non-negative), for which the mechanism cannot achieve 95% of optimal efficiency.

This 5% inefficiency is an order of magnitude greater than a related inefficiency previously proven

for combinatorial allocation mechanisms with sub-exponential communication (Journal of Economic

Theory [54]).
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1.1 Preliminaries

The setting we study is that of standard mechanism design. In the model there are n agents. Each

agent, i, has some private information (not known by the mechanism or any other agent) denoted

by a type, ti (e.g., the value of the item to the agent in an auction; or, in a CA, a vector of values,

potentially one for each bundle). The space of an agent’s possible types is denoted Ti. We use the

notation tn to refer to a collection of n types (we occasionally omit the n superscript when it is clear

that the entity is a collection of n types). Agent i’s types are drawn according to some distribution,

P (ti), that we assume is known to the mechanism designer and to agent i, but not necessarily to all

agents.

Each agent has a valuation function, vi(o, ti), that indicates its valuation under type ti, or how

much utility the agent gets when it draws type ti and outcome o ∈ O is chosen. We call the

distribution of utilities defined by a valuation function and a corresponding probability distribution

over types a preference distribution. Settings where each agent’s valuation function depends only on

its own type and the outcome chosen by the mechanism (e.g., the allocation of items to the agent

in a CA) are called private values settings. We also discuss more general interdependent values

settings, where vi = vi(o, tn) (i.e., an agent’s valuation depends on the others’ private signals). In

both settings, agents report expressions to the mechanism, denoted θi, based only on their own

types. We use the notation θn to refer to a collection of n expressions. A mapping from types to

expressions is called a pure strategy.

Definition 1 (pure strategy). A pure strategy for an agent i is a mapping, hi : Ti → Θi, that

selects an expression for each of i’s types. A pure strategy profile for a subset of agents, I, is

a list of pure strategies, one strategy per agent in I, i.e., hI ≡
[
h1, h2, . . . , h|I|

]
. For shorthand,

we often refer to hI as a mapping from types of the agents in I to an expression for each agent,

hI(tI) =
[
θ1, θ2, . . . , θ|I|

]
.

We also consider mixed strategies, or mappings from types to random variables specifying prob-

ability distributions over possible expressions.

Definition 2 (mixed strategy). A mixed strategy for agent i is a mapping, hi : Ti → P (Θi), that

selects a probability distribution over expressions for each of i’s types. A mixed strategy profile is a

list of mixed strategies, one strategy per agent.

Based on the expressions made by the agents, the mechanism computes the value of an outcome

function, f(θn), which chooses an outcome from O. The mechanism may also compute the value of

a payment function, π(θn), which determines how much each agent must pay or get paid.2

In Section 3, we discuss results pertaining to the implementation of a mechanism under two

different solution concepts: Bayes-Nash and dominant strategy equilibria. We do not restrict our
2In Section 2, we define our measures of expressiveness based only on the mechanism’s outcome function. For

our purposes, this is without loss of generality as long as agents do not care about each others’ payments. We later

discuss the payment function in more depth when we examine issues related to incentives in Section 3.
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attention to mechanisms with truthful equilibria (i.e., where agents are incentivised to report their

true types in equilibrium).3

Definition 3 (Bayes-Nash equilibrium). A mechanism is in Bayes-Nash equilibrium when agents

play a strategy profile such that no agent can gain expected utility by unilaterally deviating (i.e.,

assuming the expressions of all the other agents remain fixed).

Definition 4 (dominant-strategy equilibrium). A mechanism is in dominant-strategy equilibrium

when agents play a pure strategy profile such that no agent can gain utility by deviating, regardless

of what the other agents do.

During some of our analysis, we consider the widely studied class of mechanisms in which the

set of expressions available to an agent corresponds directly with its types. These are called direct-

revelation mechanisms.

Definition 5 (direct-revelation mechanism). A direct-revelation mechanism is a mechanism in

which each agent’s expression space is equivalent to its type space (i.e., Ti = Θi, for all i).

To summarize, we use the following notation.

• ti ∈ Ti is the true type of an agent i. The subscript t−i is used to denote a set of types for all

the agents other than i, and the superscript tn is used to denote a set of n types.

• θi ∈ Θi is the expression that agent i reports to the mechanism. The subscript θ−i is used to

denote a set of expressions for all the agents other than i, and the superscript θn is used to

denote a set of n expressions.

• o ∈ O is an outcome from the set of all possible outcomes imposable by the mechanism.

• vi : O, Ti → R is agent i’s valuation function. It takes as input the agent’s true type and an

outcome and returns the real-valued utility of the agent if that outcome were to be chosen.

(We also discuss results that apply to interdependent values settings, where vi = vi(o, tn), i.e.,

an agent’s utility also depends on others’ private signals.)

• f : Θn → O is the outcome function of the mechanism. It takes as input the expression of

each agent and returns an outcome from the set of all possible outcomes.

• π : Θn → Rn is the payment function of the mechanism. It takes as input the expression of

each agent and returns the payment to be made by each agent.

For convenience, we will let W (o, tn) denote the total social welfare of outcome o when agents

have private types (or private signals) tn, i.e., W (o, tn) =
∑

i vi(o, tn). Occasionally, we use the

3The revelation principle of mechanism design states that any outcome function that can be implemented by any

mechanism under a non-truthful equilibrium can also be implemented by some mechanism under a truthful equilib-

rium [45]. However, we do not restrict our analysis to mechanisms with truthful equilibria because in mechanisms

without full expressiveness it can be impossible for agents to express their true types.
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shorthand WI , where I refers to some subset of the agents, to denote the total social welfare of only

the agents in I. Assuming the agents play a mixed strategy equilibrium denoted by m, the expected

efficiency, E(f), of an outcome function, f , (where expectation is taken over the types of the agents

and their randomized equilibrium expressions) is given by,

E [E(f)] =
∫

tn

P (tn)
∫

θn

P (m(tn) = θn) W (f(θn), tn). (1)

2 Characterizing the expressiveness of mechanisms

The primary goal of this paper is to better understand the impact of making mechanisms more

or less expressive. In order to achieve this goal, we must first develop meaningful (and general)

measures of a mechanism’s expressiveness.

If we consider mechanisms that allow expressions from the set of multi-dimensional real num-

bers, such as CAs and combinatorial exchanges, one seemingly natural way of characterizing their

expressiveness is the dimensionality of the expressions they allow (e.g., this is one difference between

CAs and auctions that only allow per-item bids). However, not only would this limit the notion of

expressiveness to mechanisms with real-valued expressions, it also does not adequately differentiate

between expressive and inexpressive mechanisms, as the following well-known result demonstrates.

Proposition 1. For any mechanism that allows multi-dimensional real-valued expressions, (i.e.,

Θi ⊆ Rd), there exists an equivalent mechanism that only allows the expression of one real value

(i.e., Θi = R).4 (This follows immediately from Cantor (1890): being able to losslessly map between

the spaces Rd and R.)

Thus, it is not the number of real-valued questions that a mechanism can ask that truly charac-

terizes expressiveness, it is how the answers are used!

Another natural way in which mechanisms can differ is in the granularity of their outcome

spaces. For example, auction mechanisms that are restricted to allocating certain items together

(e.g., blocks of neighboring frequency bands) have coarser outcome spaces than those that can

allocate them individually. Some prior work addresses the impact of a mechanism’s outcome space

on its efficiency. For example, it has been shown that, in private values settings, VCG mechanisms

with less coarse outcome spaces always have more efficient dominant-strategy equilibria [34, 53].

In contrast, we are interested in studying the impact of a mechanism’s expressiveness on its

efficiency. We do this by comparing more and less expressive mechanisms with the same outcome

space (e.g., fully expressive CAs and multi-item auctions that allow bids on individual items only).

In our approach, the outcome space can be unrestricted or restricted; thus the results can be used

in conjunction with those stating that larger outcome spaces beget greater efficiency. Furthermore,

in many practical applications there is no reason to restrict the outcome space,5 but there may be
4Proofs of all technical claims are located in the Appendix at the end of this paper.
5This is the case as long as the mechanism designer’s goal is efficiency, but this is not always the case for revenue

maximization, for example.
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a prohibitive burden on agents if they are asked to express a large amount of information; thus it is

limited expressiveness that is the crucial issue.

2.1 Impact-based expressiveness

In order to properly differentiate between expressive and inexpressive mechanisms with the same

outcome space, we propose to measure the extent to which an agent can impact the outcome that

is chosen. We define an impact vector to capture the impact of a particular expression by an agent

under the different possible types of the other agents. (The subscript −i refers to all the agents

other than agent i.)

Definition 6 (impact vector). An impact vector for agent i is a function, gi : T−i → O. To

represent the function as a vector of outcomes, we order the joint types in T−i from 1 to |T−i|; then

gi can be represented as
[
o1, o2, . . . , o|T−i|

]
.

We say that agent i can express an impact vector if there is some pure strategy profile of the

other agents such that one of i’s expressions causes each of the outcomes in the impact vector to be

chosen by the mechanism.

Definition 7 (express). Agent i can express an impact vector, gi, if

∃h−i, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i).

We say that agent i can distinguish among a set of impact vectors if it can express each of them

against the same pure strategy profile of the other agents by changing only its own expression.

Definition 8 (distinguish). Agent i can distinguish among a set of impact vectors, Gi, if

∃h−i, ∀gi ∈ Gi, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i),

when this is the case, we say Di(Gi) is true.

Figure 1 illustrates how an agent can distinguish between two different impact vectors against a

pure strategy profile of the other agents.

Intuitively, more expressive mechanisms allow agents to distinguish among larger sets of impact

vectors. Our first expressiveness measure captures this intuition; it measures the number of different

impact vectors that an agent can distinguish among. Since this depends on what the others express,

we measure the best case for a given agent, where the others submit expressions that maximize the

agent’s control. We call this the agent’s maximum impact dimension.

Definition 9 (maximum impact dimension). Agent i has maximum impact dimension di if the

largest set of impact vectors, G∗i , that i can distinguish among has size di. Formally,

di = max
Gi

{|Gi|
∣∣ Di(Gi)

}
.
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Figure 1: By choosing between two expressions, θ
(1)
i and θ

(2)
i , agent i can distinguish between the

impact vectors [A,B] and [C, D] (enclosed in rectangles). The other agents are playing the pure

strategy profile
[
θ
(x)
−i , θ

(y)
−i

]
.

We will show in Section 3 that every agent’s maximum impact dimension ties directly to an upper

bound on the expected efficiency of the mechanism’s most efficient Nash equilibrium. In particular,

the upper bound increases strictly monotonically as the maximum impact dimension for any agent

i increases from 1 to d∗i , where d∗i is the smallest maximum impact dimension needed by the agent

in order for the bound to reach full efficiency.

However, the maximum impact dimension also has some drawbacks as a measure. First, it does

not capture the way in which an agent’s impact vectors are distributed. For example, it is possible

that a mechanism that allows a smaller maximum impact dimension can be designed to let an agent

distinguish among a more important (e.g., for efficiency) set of impact vectors. Second, it is not

clear that the maximum impact dimension can be measured, numerically or analytically, in settings

where even a single agent has an infinite type space.

2.2 Shattering-based expressiveness

We will now discuss a related notion of expressiveness, which we call outcome shattering. As we will

show later, it has somewhat different uses than the maximum impact dimension.

Outcome shattering is based on a notion called shattering, a measure of functional complexity

that we have adapted from the field of computational learning theory [15, 71]. In learning theory,

a class of binary classification functions6 is said to shatter a set of k instances if there is at least

one function in the class that assigns each of the possible 2k dichotomies of labels to the set of

instances. Intuitively, a class of functions that can shatter larger sets of instances is more expressive.

To illustrate this idea consider the following example taken from Mitchell pp. 215-216 [49].

Example 1. Consider the class of binary classification functions that assign a 1 to points only if

they fall in an interval on the real number line between two constants a and b. Now we can ask

whether or not this class of functions has enough expressive power to shatter the set of instances
6Binary classification functions are functions that assign each possible input a binary output label of either 0 or 1.
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S = {3.1, 5.7}? Yes, for example the four functions (1 < x < 2), (1 < x < 4), (4 < x < 7) and

(1 < x < 7) will assign all possible labels to the instances in S.

Our adaptation of shattering for mechanisms captures an agent’s ability to distinguish among

each of the |O′||T−i| impact vectors involving outcomes from a given set, O′.
Definition 10 (outcome shattering). A mechanism allows agent i to shatter a set of outcomes,

O′ ⊆ O, over a set of joint types for the other agents, T−i, if Di(GO
′

i ), where,

GO
′

i =
{
gi

∣∣gi =
[
o1, o2, . . . , o|T−i|

]
, oj ∈ O′

}
.

Example 2. If agent i can distinguish among the following set of impact vectors, Gi, then it can

shatter a set of outcomes, {A, B,C, D}, over two joint types of the other agents:

Gi =





[A,A], [B, A], [C, A], [D, A],

[A, B], [B, B], [C, B], [D, B],

[A,C], [B, C], [C, C], [D, C],

[A,D], [B,D], [C,D], [D, D]





We also use a slightly weaker adaptation of shattering for analyzing the more restricted setting

where agents have private values. It captures an agent’s ability to cause each of the
(|O′|+1

2

)
unordered

pairs of outcomes (with replacement) to be chosen for every pair of types of the other agents, but

without being able to control the order of the outcomes (i.e., under which of the other agents’ types

each of the outcomes is chosen). We call this semi-shattering. 7

Definition 11 (outcome semi-shattering). A mechanism allows agent i to semi-shatter a set of

outcomes, O′, over a set of joint types for the other agents, T−i, if i can distinguish among a set

of impact vectors, Gi, such that for every pair of types {{x, y} ∈ T−i|x 6= y}, and every pair of

outcomes, {{o1, o2} ∈ O′|o1 6= o2},

[(∃gi ∈ Gi, gi (x) = o1 ∧ gi (y) = o2) ∧ ¬ (∃gi ∈ Gi, gi (x) = o2 ∧ gi (y) = o1)] ∨

[(∃gi ∈ Gi, gi (x) = o2 ∧ gi (y) = o1) ∧ ¬ (∃gi ∈ Gi, gi (x) = o1 ∧ gi (y) = o2)] .

The notion of outcome semi-shattering is best illustrated by the following simple examples.

Example 3. If agent i can distinguish among the following set of impact vectors, Gi, then it can

semi-shatter a set of outcomes, {A, B,C, D}, over two joint types of the other agents (the order of

the pairs that are included does not matter, for example [A,B] could be replaced with [B, A]):

Gi =





[A,A],

[A, B], [B, B],

[A,C], [B, C], [C, C],

[A,D], [B,D], [C,D], [D, D]





7There are many ways to generalize the shattering notion to functions that can return more than two outcomes,

c.f. [11]. We have adapted the two most natural ones for our work on expressiveness in mechanism design—in

Definitions 10 and 11, respectively. Definition 11 has been slightly altered compared to the version presented at a

conference in order to be able to also prove ties to communication complexity.
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Since semi-shattering is a pairwise notion, it does not always include the entire bottom left half

of a sorted matrix, as in the previous example. For example, the following set of impact vectors

constitutes semi-shattering a set of three outcomes.

Example 4. If agent i can distinguish among the following set of impact vectors, Gi, then it can

semi-shatter the set of outcomes {A,B, C} over three joint types of the other agents:

Gi =





[A,A, A],

[A,A, B],

[A,A, C],

[A,B, B], [B,B, B],

[A,C,B], [B, C, B],

[A,C,C], [B,C, C], [C, C,C]





Notice that every pair of outcomes appears in every pair of slots, in the same order, and at least

once, which is exactly the requirement for semi-shattering.

Our second measure of expressiveness is based on the size of the largest outcome space that an

agent can shatter or semi-shatter.8 It captures the number of outcomes that the mechanism can

support full expressiveness over for that agent. We call it the (semi-)shatterable outcome dimension.

Definition 12 ((semi-)shatterable outcome dimension). Agent i has (semi-)shatterable outcome

dimension ki if the largest set of outcomes that i can (semi-)shatter has size ki.

The (semi-)shatterable outcome dimension measure addresses both of the concerns with max-

imum impact dimension that we raised at the end of the previous section. Unlike the maximum

impact dimension, which provides no information as to how the distinguishable impact vectors are

distributed, the (semi-)shatterable outcome dimension measures the number of different outcomes

for which an agent has full expressiveness. In addition, it has the advantage that we can rule out the

(semi-)shatterability of a set of outcomes by merely ruling out the existence of a pair of expressions

by the other agents that allows the agent to (semi-)shatter the set.

Observation 1. Agent i can (semi-)shatter an outcome space O′ only if there exists at least one

pair of expressions by the other agents that allows i to (semi-)shatter O′. (In other words, there

exists a pair of fixed expressions by the other agents such that i can cause any (unordered) pair of

outcomes from O′ to be chosen.)

This observation will allow us to analyze the measure even when agents have infinite type spaces,

and may help one operationalize expressiveness for automated mechanism design [20] in the future.

We use this insight throughout the study of channel-based mechanisms in Section 5.
8The measure deals with the size of this space, rather than the specific outcomes it contains, because a designer

can always re-label the outcomes in the set to transform it into any other set of the same size.
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The next two results illustrate the close relationship between the shatterable outcome dimension

measures and the maximum impact dimension measure. While the two measures are related, the

shatterable outcome dimension can be thought of as a measure of expressiveness breadth.

Proposition 2. Increasing a limit on an agent’s shatterable or semi-shatterable outcome dimension

also increases a limit on its maximum impact dimension.

Proposition 3. In order to shatter ki outcomes, agent i must be able to distinguish among at least

|T−i|ki impact vectors.

This result states that the maximum impact dimension necessary for an agent to shatter k

outcomes increases geometrically in the number of types of the other agents, which illustrates the

relationship between expressiveness and uncertainty. As uncertainty goes up (the number of types

that the other agents have can be thought of as a support-based measure of uncertainty), more

expressiveness is needed to shatter a given set of outcomes.

2.3 Uses of the expressiveness measures

The expressiveness measures introduced above enable us to understand mechanisms from a new

perspective. Because the measures are so new, we undoubtedly fail to see all of their possible uses

at this time, however we already see several.

First, we can measure the expressiveness of an existing mechanism, and thereby bound how well

the mechanism can do in terms of a designer’s objective. For example, in the next section, we

show how our expressiveness measures directly relate to an upper bound on the efficiency of any

mechanism.

Second, one may be able to use the expressiveness measures in designing new mechanisms. For

example, if there are some constraints on what—and how much—information the agents can submit

to the mechanism (e.g., in a CA, allowing bids on packages of no more than k items), then our

measures can be used to design the most expressive mechanism subject to those constraints. This,

in turn, hopefully maximizes the mechanism designer’s objective subject to the constraints. For

example, our results presented in the next section imply that this approach can be used to yield the

most efficient possible Bayes-Nash equilibrium in any private values setting.

We can also ask which of the expressiveness measures—maximum impact dimension, shatterable

outcome dimension, or semi-shatterable outcome dimension—is most appropriate under different

settings and for different purposes. If the designer knows which impact vectors are (most) important,

then the maximum impact dimension is the measure of choice. If, instead, the designer knows which

outcomes are (most) important but not which impact vectors are (most) important, then the other

two measures can be used to make sure that the agents have full expressiveness over those outcomes.

As we will show in Section 3, in private values settings the appropriate measure is semi-shatterable

outcome dimension (for one, semi-shatterability is enough to guarantee that lack of expressiveness

will not limit the mechanism’s efficiency at all), and in interdependent values settings the appropriate
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measure is shatterable outcome dimension. Also, we will show that less than full (semi-)shatterability

necessarily leads to arbitrary inefficiency under some preference distributions.

Another use of the semi-shatterable outcome dimension is to analyze a broad subclass of mech-

anisms which we will call channel based. This will be discussed in Section 5.

3 Relationship between expressiveness and efficiency

Perhaps the most important property of our domain-independent measures of expressiveness is how

they relate to the efficiency of the mechanism’s outcome. In this section, we will discuss a cooperative

upper bound on the expected efficiency of a mechanism’s most efficient equilibrium that is tied

directly to the expressiveness of an optimally designed mechanism and can always be implemented

by a budget-balanced mechanism in Bayes-Nash equilibrium (in private values settings).9

The bound measures the efficiency of the outcome function under the optimistic assumption that

the agents play strategies which, taken together, attempt to maximize expected efficiency. Studying

this bound allows us to sidestep two of the major roadblocks faced by many prior attempts at

analyzing the relationship between expressiveness and efficiency: 1) we do not have to solve for any

of the mechanism’s equilibria (attempts at doing this have proved difficult for many expressive and

inexpressive mechanisms [52, 55, 60, 70, 74, 77]) and 2) since it bounds the most efficient equilibrium,

it can be used to study mechanisms with multiple—or an infinite number of—equilibria, e.g., first

price CAs [13].

Proposition 4. The following quantity, E [E(f)]+, is an upper bound on the expected efficiency of

the most efficient mixed-strategy profile under any mechanism with outcome function f ,

E [E(f)]+ = max
ĥ(·)

∫

tn

P (tn) W
(
f(ĥ(tn)), tn

)
. (2)

The bound holds for mixed strategies, but the maximum in the equation need only be taken over the

space of pure-strategy profiles, ĥ(·).
To see how this bound is tied to our notions of expressiveness, consider calculating it from the

fixed perspective of a particular agent i. Based on the assumption behind the bound, the other agents

will choose whatever pure strategies are best for maximizing expected efficiency. Thus, from agent

i’s perspective, the maximization above amounts to finding the set of expressible impact vectors

that lead to the highest expected efficiency.

3.1 Conditions under which the bound is fully efficient

There is an impact vector for each of agent i’s types that represents the vector of the most efficient

outcomes when it is matched with each of the joint types of the other agents. We call a set of such
9The upper bound we derive represents a cooperative equilibrium that could be used to bound the value of any

objective that depends only on the agents’ types and the outcome chosen by the mechanism. By extension, all of our

subsequent theory (except for the implementability of the bound discussed in Section 3.4) also applies for any such

objective.
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impact vectors a fully efficient set. Such a set must be distinguishable by each agent for the bound

to reach full efficiency.

Definition 13 (fully efficient set). G∗i is a fully efficient set if

∀ti, ∃gi ∈ G∗i , ∀{t−i | P (ti, t−i) > 0}, W (gi(t−i), [ti, t−i]) = max
o∈O

W (o, [ti, t−i]).

Proposition 5. E[E(f)]+ reaches full expected efficiency if and only if each agent can distinguish

among the impact vectors in at least one of its fully efficient sets.

In full information settings, whereupon learning its own type an agent knows the types of the

other agents for sure, the agent is guaranteed to have a fully efficient set of size ≤ |O|. (This is

slightly more general than assuming the agent has perfect information about the types of the other

agents a priori, since it need only have this information once its own type is revealed.)

Proposition 6. Let G∗i be agent i’s smallest fully efficient set,

(∀ti, ∃t−i

∣∣ P (ti, t−i) = 1
) ⇒ |G∗i | ≤ |O|.

Corollary 1. If agent i has full information then there exists an outcome function for which the

upper bound reaches full efficiency while limiting i to maximum impact dimension di ≤ |O|.

The implication of this result is that perfect information about the other agents’ types essentially

eliminates the need for expressiveness. Thus, in prior research showing that in certain settings

even quite inexpressive mechanisms yield full efficiency in ex-post Nash equilibrium (e.g., [1]), the

assumption that the agents know each other’s types is essential.

3.2 The efficiency bound increases strictly with expressiveness

The following results demonstrate that a mechanism designer can strictly increase the upper bound

on expected efficiency by giving any agent more expressiveness (until the bound reaches full ef-

ficiency). The result applies to the outcome function that maximizes the bound subject to the

constraint that agent i’s expressiveness be less than or equal to a particular level. The bound at-

tained by such an optimal outcome function is also an upper bound for any outcome function at

that expressiveness level or lower.

Theorem 1. For any setting and any distribution over agent preferences, the upper bound on

expected efficiency, E [E(f)]+, for the best outcome function limiting agent i to maximum impact

dimension di increases strictly monotonically as di goes from 1 to d∗i (where d∗i is the size of agent

i’s smallest fully efficient set).

From Proposition 2, we know that any increase in allowable shatterable or semi-shatterable

outcome dimension implies an increase in allowable maximum impact dimension; thus Theorem 1

implies that strict monotonicity holds for these measures as well.
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Corollary 2. The upper bound on expected efficiency, E[E(f)]+, of the best outcome function lim-

iting agent i’s expressiveness to (semi-)shatterable outcome dimension ki increases strictly mono-

tonically as ki goes from 1 to k∗i (where k∗i is the (semi-)shatterable outcome dimension necessary

for the bound to reach full efficiency).

3.3 Inadequate expressiveness can lead to arbitrarily low efficiency in any

setting, for some preference distributions

The next three lemmas provide the foundation for our second main theorem regarding the efficiency

bound. They demonstrate that in any setting there are distributions over agent preferences under

which an increase in allowed expressiveness leads to an arbitrary improvement in the upper bound

on expected efficiency. We prove that the arbitrary increase is possible by constructing an example

under which it is inevitable. (We try to keep these constructions as general as possible: we allow for

any number of outcomes, any number of agents, and any number of types.)

Lemma 1. For any agent i in an interdependent values setting (with any number of outcomes,

any number of other agents, and any number of joint types for those agents), there exist preference

distributions under which E[E(f)]+ for the best outcome function limiting agent i’s maximum impact

dimension to di (where 2 ≤ di ≤ |O||T−i|) is arbitrarily larger than that of any outcome function

limiting i’s maximum impact dimension to di − 1.

The next lemma deals with the arbitrary improvement that can be achieved by allowing an

agent to shatter a single additional outcome. Here we distinguish between an increase in shatterable

outcome dimension, for interdependent values settings, and semi-shatterable outcome dimension,

for private values settings. As we will see, in a private values setting there is no need to allow full

shattering to achieve full efficiency.

Lemma 2. For any agent i in any setting (with any number of outcomes, any number of other

agents, and any number of joint types for those agents), there exist preference distributions under

which E[E(f)]+ for the best outcome function limiting agent i’s expressiveness to

• shatterable outcome dimension ki for interdependent values settings, or

• semi-shatterable outcome dimension ki for private values settings

(where 2 ≤ ki ≤ |O|) is arbitrarily larger than that of any outcome function that limits i’s expres-

siveness to ki − 1.

Private values settings place restrictions on agents’ utility functions and, therefore, on the

efficiency-maximizing outcomes under different types. We will use the following lemma to show

that in such settings allowing the agents to semi-shatter the outcomes is sufficient for maximizing

the efficiency bound. The lemma proves that the most efficient order for two outcomes under any

pair of opposing types must be the same for all of agent i’s types.
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Lemma 3. In any private values setting, for any agent i, any pair of outcomes, o1 and o2, and any

pair of types for the other agents, t
(1)
−i and t

(2)
−i , if there exists some type of agent i, ti, where it is

strictly more efficient for o1 to be chosen under type t
(1)
−i and o2 to be chosen under type t

(2)
−i than

vice-versa (i.e., o1 for t
(2)
−i and o2 for t

(1)
−i ), then it cannot be more efficient for the outcomes to be

chosen in the other order for any type of agent i.

We conclude this section with a result that integrates the three lemmas above. The theorem

adds the fact that an arbitrary loss in efficiency can only happen if the shatterable (for interde-

pendent values) or semi-shatterable (for private values) outcome dimension is less than the number

of outcomes in the mechanism. Thus, these dimensions can be used to provide a guarantee that a

mechanism has enough expressiveness to avoid arbitrary expected efficiency loss under any possible

preference distribution.

Theorem 2. For any setting, there exists a distribution over agent preferences such that E[E(f)]+

for the best outcome function limiting agent i to

• shatterable outcome dimension, ki < |O|, in an interdependent values setting, or

• semi-shatterable outcome dimension, ki < |O|, in a private values setting

is arbitrarily less than that of the best outcome function limiting agent i to (semi-)shatterable outcome

dimension ki + 1.

3.4 Bayes-Nash implementation of the upper bound is always possible in

private values settings

In addition to the results above, we find that the upper bound on expected efficiency can be im-

plemented in Bayes-Nash equilibrium for any outcome function, in any private values10 setting, as

long as the agents have quasi-linear utility functions. Quasi-linearity means that the agent’s utility

functions are linear in money or some commonly agreed upon currency. Formally, a quasi-linear

utility function for agent i takes the form ui = vi − πi, where vi is the agent’s valuation for the

outcome chosen by the mechanism and πi is the payment from the agent to the mechanism. This

is the first point in the paper where we assume quasi-linearity: all the results so far apply with and

without that restriction.

Theorem 3. For any private values setting with quasi-linear preferences and any outcome function,

f , there exists a class of payment functions that achieve the upper bound on efficiency, E[E(f)]+, in

a pure-strategy Bayes-Nash equilibrium.

This implementability of the upper bound implies that, for private values settings, we can recast

all of our earlier results that relate expressiveness to the bound as relating expressiveness to the

efficiency of the most efficient implementable Bayes-Nash equilibrium.
10Implementing efficient allocations in Bayes-Nash equilibrium for interdependent values settings is impossible even

with full expressiveness [40]. The difficulty stems from the need for the mechanism designer to know the beliefs of the

agents about each others’ private information.
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3.4.1 Individual rationality and budget balance

In this section, we will discuss individual rationality and budget balance, and how they are related

to expressiveness. First, in Bayes-Nash equilibrium, we can always get strong budget balance (i.e.,

the total payments to and from all agents are equal), and we can get ex ante individual rationality

(i.e., it is always in an agent’s best interest to participate in the mechanism prior to learning its own

type) as long as agent valuations for outcomes are non-negative.

Proposition 7. There exists at least one payment function in the class of Theorem 3 that is strongly

budget balanced and, if agent valuations for outcomes are non-negative, ex ante individually rational.

These payment functions are derived much like in the expected-form Groves mechanism which is

due to d’Aspremont and Gerard-Varet [25] and Arrow [6] (called the dAGVA mechanism). However,

as implied by the Myerson-Satterthwaite impossibility theorem [51] for fully expressive mechanisms,

there may not exist a payment function in this class that is ex interim individually rational (i.e., it

may not be in an agent’s best interest to participate once the agent knows its own type). Additionally,

there exist settings, such as the one described in the following example, where the fully expressive

dAGVA mechanism is ex-interim individually rational but a limited-expressiveness variant is not.

Example 5. Consider an auction for one item run using the dAGVA mechanism. Assume there

are two bidders with valuations for the item drawn from the uniform distribution over [0, 1] and one

auctioneer with zero valuation for the item. Let θ̂ represent the bidders’ bids, assuming they follow the

Bayes-Nash equilibrium and report their valuations truthfully, and let fi(θ) be an indicator function

that returns one if bidder i wins the item and zero otherwise. The following reasoning demonstrates

that the fully expressive dAGVA mechanism is ex interim individually rational for this setting.

First, we can calculate the dAGVA payment for one of the bidders, i, for a given set of bids (the

payment to the auctioneer is the sum of the payments from the bidders). We begin with the general

formula for the dAGVA payment function in a direct-revelation mechanism and then instantiate it

for a bidder in this example.

πi(θ̂) = −Eθ−i [W−i(f(θ̂i, θ−i), θ−i)] +
1

n− 1


∑

j 6=i

Eθ−j

[
W−j(f(θ̂j , θ−j), θ−j)

]



= −Eθ−i [θ−if−i(θ̂i, θ−i)] +
1
2

(
Eθi [θifi(θi, θ̂−i)] + Eθ[max(θi, θ−i)]

)

=
1
12

+
θ̂2

i

2
− θ̂2

−i

4
Next, we can calculate bidder i’s expected utility when it draws type θi.

E[ui|θi] = Eθ̂−i
[θifi(θi, θ̂−i)]− Eθ̂−i

[
πi(θi, θ̂−i)

]

= Eθ̂−i
[θifi(θi, θ̂−i)]− Eθ̂−i

[
1
12

+
θ2

i

2
− θ̂2

−i

4

]

=
θ2

i

2
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Since θi can never be less than zero, E[ui|θi] can never be negative in this setting.

However, if we consider bidder i’s expected utility under the best outcome function with less

than full expressiveness, we find this is not necessarily true. Say we limit the expressiveness to a

maximum impact dimension of one. Now, the best limited-expressiveness outcome function for this

setting always allocates the item to the same bidder regardless of the bids. Call that bidder i. Under

these assumptions, bidder i’s dAGVA payment and expected utility are

πi(θ̂) = −Eθ−i [θ−if−i(θ̂i, θ−i)] +
1
2

(
Eθi [θifi(θi, θ̂−i)] + Eθ[θi]

)

= Eθi
[θi]

E[ui|θi] = θi − Eθi
[θi]

Thus, bidder i’s expected utility is negative whenever the valuation it draws is less than its expected

valuation.

3.4.2 Impossibility of dominant strategy implementation

While Theorem 3 shows it is always possible to implement the upper bound for private values settings

in Bayes-Nash equilibrium, we show below that there exist private values settings for which dominant

strategy implementation is impossible without full expressiveness. In other words, it is known that

with full expressiveness there is no difference between what is possible in dominant strategies and

Bayes-Nash equilibrium (except for issues of individual rationality and budget balance), but we show

that with less than fully expressive mechanisms there is a fundamental difference in the power of

the two solution concepts.

Theorem 4. There exist private values settings with quasi-linear preferences where the outcome

function that maximizes the upper bound on efficiency, E[E(f)]+, while limiting agent i to a max-

imum impact dimension di < d∗i (d∗i is the size of agent i’s smallest fully efficient set), cannot be

implemented in dominant strategies.

The reason for this impossibility is that there exist settings where the best limited-expressiveness

outcome function is not guaranteed to satisfy the weak-monotonicity property, a condition which

has been shown to be necessary for dominant strategy implementation [14]. This property requires

that the outcome function react properly to relative changes in an agent’s reported preferences for

any two outcomes.

4 Relationship between expressiveness and communication

complexity

In this section, we consider the relationship between our notions of expressiveness and more tradi-

tional notions of communication complexity. Our expressiveness measures quantify how the mecha-

nism uses information, while communication complexity measures how much information has to be

16



communicated (by the agents) to compute it. Although these notions do not measure exactly the

same thing, they are closely related. In this section we will begin to formalize this relationship.

One measure of an outcome function’s communication complexity for agent i is the size of its

expression space, |Θi|. As we will show, this determines an upper bound on the amount of informa-

tion communicated by the agent under any communication procedure that computes the outcome

function.

In relating expressiveness to the number of expressions needed for each agent, we consider whether

or not a given outcome function can be emulated by an outcome function with fewer expressions

(essentially losslessly compressed).

Definition 14 (emulate). An outcome function, f ′, emulates another outcome function, f , if there

exists a function, qi, for each agent, i, that maps from i’s expression space under f to i’s expression

space under f ′, such that

∀i, ∀θi, ∀θ−i, f(θi, θ−i) = f ′(qi(θ′i), q−i(θ′−i)).

For a given outcome function, f , each agent’s maximum impact dimension provides a lower bound

on the the number of expressions needed for that agent by any outcome function that emulates f .

Proposition 8. It is impossible to emulate an outcome function, f , with an outcome function that

provides any agent with less expressions than its maximum impact dimension under f .

Furthermore, for any outcome function that belongs to the widely studied class of direct-

revelation mechanisms, an agent’s maximum impact dimension is exactly the number of expressions

used by the best emulator of the outcome function (i.e., the outcome function that emulates it while

minimizing the number of expressions).

Lemma 4. Under a direct-revelation outcome function, each agent i’s impact dimension is maxi-

mized when the agents other than i report their types truthfully, (i.e., h−i(t−i) = t−i is the strategy

that maximizes i’s impact dimension).

Proposition 9. Any direct-revelation outcome function, f , can be emulated by another outcome

function, f ′, that provides each agent, i, with exactly di expressions, where di is agent i’s maximum

impact dimension under f .

Given this relationship between our expressiveness measure and the number of expressions needed

by any agent, we have the following two Corollaries related to the upper bound on expected efficiency,

E[E(f)]+. Corollary 3 states that increasing a limit on the number of expressions given to an agent

strictly increases the bound. Corollary 4 states that some distributions require an agent to have a

number of expressions that is exponential in the number of types of the other agents to avoid being

arbitrarily less than fully efficient.

Corollary 3. For any setting and any distribution over agent preferences, E[E(f)]+ for the best

outcome function limiting agent i to di expressions increases strictly monotonically as di goes from

1 to d∗i , where d∗i is the size of agent i’s smallest fully efficient set.
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Corollary 4. There exists settings and distributions over agent preferences such that the upper

bound on expected efficiency for the best outcome function limiting agent i to less than |T−i||O|
expressions is arbitrarily less than that of the best outcome function.

While the reasoning above provides an upper bound on an outcome function’s communication

complexity, it does not account for the possibility of designing clever elicitation protocols, such as

protocols that iteratively ask different agents different questions (cf. [64]). To address this, we will

also relate our notion of expressiveness to a lower bound on communication complexity. The lower

bound is derived by considering the execution of the outcome function as a two-party communication

problem, where agent i holds one piece of information (its intended expression) and the agents other

than i hold another (their intended joint expression). From this perspective, we can study the

outcome function using Yao’s model of communication complexity [76], as in Nisan and Segal’s

seminal work on communication complexity in mechanism design [54].

Yao’s model considers the computation of a pre-specified function based on the information held

by the agents. It is typical, when using this model, to think of the function being computed as a

matrix where the rows represent the possible inputs to the function from one agent, the columns

represent the possible inputs from the other agent, and each cell contains the value of the function

under the inputs corresponding to its row and column. For a given outcome function, f , and agent,

i, we can construct such an input matrix from i’s perspective by placing its expressions along the

rows and the joint expressions of the other agents along the columns. The cells of the matrix contain

the outcome chosen by the outcome function under the corresponding expressions. (Thus, the rows

correspond to agent i’s possible impact vectors.)

It has been shown that any communication protocol that computes f must involve at least

one message for each of the monochromatic rectangles (i.e., contiguous rectangles of expressions

that result in the same outcome being chosen) in some partitioning of f ’s input matrix [42]. The

following result shows how our notion of semi-shattering is related to the number of monochromatic

rectangles needed in any partitioning of f . Specifically, any set of types for the agents other than

i over which agent i can semi-shatter a pair of outcomes leads to a corresponding set of expression

pairs that cannot be in the same monochromatic rectangle for either outcome.

Lemma 5. Let T−i be a set of joint types for the agents other than i over which agent i can semi-

shatter a pair of outcomes, A and B, under some outcome function, f . There exists a set of |T−i|−1

pairs of expressions that cannot be in the same A- or B-monochromatic rectangle of f .

This leads directly to a lower bound on the number of monochromatic rectangles needed by any

partitioning of an outcome function’s input matrix and, consequently, a lower bound on the number

of messages needed by any communication protocol that computes it.

Theorem 5. For any outcome function, f , agent, i, and outcome, o, let T o
−i denote the largest set

of types over which i can semi-shatter a pair of outcomes containing o. Also, let di be i’s maximum

impact dimension under f . The number of monochromatic rectangles, R, needed by any partitioning
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of the input matrix of f , and the number of messages needed by the best communication protocol that

computes f , M(f), satisfy the following inequality,

min
i

di ≥ M(f) ≥ R ≥ max
i

∑

o∈O

|T o
−i| − 1. (3)

This result bounds the number of bits needed by any discrete communication protocol that

computes f , since a function that requires M(f) messages to compute must communicate at least

log2(M(f)) bits (i.e., the depth of a binary tree with M(f) leaves). Our bound is also consistent with

earlier results showing that combinatorial allocation mechanisms can require the communication of

a number of bits that is exponential in the number of items [54], since the number of types an agent

has in a combinatorial allocation setting is typically doubly-exponential in the number of items:

if there are m items, and an agent has k possible values for each bundle, then the agent has k2m

types. Thus, according to Theorem 5, a combinatorial allocation mechanism that allows an agent

to semi-shatter even a single pair of outcomes over the other agents’ entire type space would require

at least log2(|T−i| − 1) bits, which is on the order of 2m bits.

5 An instantiation to illustrate expressiveness: Channel-based

mechanisms

We will now instantiate our theory of expressiveness for an important class of mechanisms, which

we call channel based. Channel-based mechanisms are defined as follows (a small example is also

presented in Figure 2).

Definition 15 (channel-based mechanism). Each outcome is assigned a set of channels potentially

coming from a number of different agents (e.g., outcome A may be assigned channels x1 and y1 from

Agent 1 and x2 from Agent 2). Each agent, simultaneously with the other agents, reports real values

on each of its channels to the mechanism. The mechanism chooses the outcome whose channels have

the largest sum.11 Formally, a channel-based mechanism has the following properties.

• The expression space of agent i is a vector of real numbers with dimension ci, (i.e., Θi ≡ Rki).

Each dimension is called a channel.

• For each agent i there is a set of channels associated with each outcome o, SO
i , such that

the mechanism’s outcome function chooses the outcome with associated channels that have the

greatest reported sum:

f(θ) = arg max
O∈O

∑

i

∑

j∈SO
i

θij .

11We assume that ties are broken consistently according to some strict ordering on the outcomes. This prevents an

agent from using the mechanism’s tie breaking behavior as artificial expressiveness.
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Fully expressive combinatorial auction. Auction that only allows bids on items.

Figure 2: Channel-based representations of two auctions. The items auctioned are an apple (a) and

an orange (o). The channels for each agent i are denoted xi, yi, and zi. The possible allocations

are A, B, C, and D. In each one, the items that Agent 1 gets are in the first braces, and the items

Agent 2 gets are in the second braces.

Many different mechanisms for trading goods, information, and services, such as combinatorial

allocation mechanisms, CAs, exchanges, and multi-attribute mechanisms can be cast as channel-

based mechanisms.

A natural measure of expressiveness in channel-based mechanisms is the number of channels

allowed. For CAs, it is able to capture the difference between fully expressive CAs, multi-item

auctions that allow bids on individual items only (Fig. 2), and an entire spectrum in between. In

fact, it generalizes a classic measure of expressiveness in CAs called k-wise dependence [22]. First,

we will demonstrate that our domain-independent expressiveness measures relate appropriately to

the number of channels allowed in a channel-based mechanism.

Proposition 10. For any agent i, its semi-shatterable outcome dimension, ki, in the most expressive

channel-based mechanism strictly increases (until ki = |O|) as the number of channels assigned to

the agent increases.

Based on Theorems 1 and 2, we know that an increase in expressiveness will always yield an

increase in our efficiency bound and can lead to an arbitrary large increase, even in private values

settings.

Corollary 5. For any setting, the upper bound on expected efficiency of the best channel-based

mechanism that allows ci channels for agent i is strictly greater than, and can be arbitrarily larger

than, that of the best mechanism that allows agent i to have c′i channels, where ci < c′i ≤ c∗i and c∗i
is the number of channels needed for full efficiency.

However, if an agent has full information it only needs a logarithmic number of channels to bring

the bound to full efficiency. (This also happens to be the number of channels in any multi-item

auction that allows item bids only.)
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Proposition 11. If agent i has full information about the other agents, in a channel-based mecha-

nism it needs only dlog2(|O|)e channels to shatter the entire outcome space.

On the other hand, an agent with less than full information cannot fully shatter any set of two

or more outcomes in a channel-based mechanism.

Proposition 12. No channel-based mechanism allows any agent to shatter any set of two or more

outcomes when the other agents have two or more types.

Since channel-based mechanisms do not allow full shattering, our results from the previous section

imply that in some interdependent values settings any channel-based mechanism, even one that

emulates the VCG mechanism, will be arbitrarily inefficient. (That such mechanisms cannot always

get full efficiency in interdependent values settings is already known [40].)

Corollary 6. In any interdependent values setting, there exist preference distributions for which

any channel-based mechanism (even one that emulates the VCG mechanism) results in arbitrarily

less than full expected efficiency.

However, full efficiency can be achieved in any private values setting—despite agent uncertainty—

by a channel-based mechanism with |O| − 1 channels per agent that emulates the VCG mechanism.

Proposition 13. A channel-based mechanism can emulate the VCG mechanism if and only if it

provides each agent with at least |O| − 1 channels.

Our next two results deal with a configuration of channels that prevents an agent from being

able to semi-shatter a set containing two particular pairs of outcomes.

Lemma 6. For any sets, A, B, C, and D, the following bi-directional implication holds,

(A \ C = D \B) and (C \A = B \D) ⇔ (A \D = C \B) and (D \A = B \ C) .

Lemma 7. Consider a set of outcomes, {A,B, C, D}, connected to different sets of channels for

agent i, {SA
i , SB

i , SC
i , SD

i }, respectively. Agent i cannot semi-shatter any set of outcomes containing

both pairs {A, B} and {C, D} (i.e., there is no fixed pair of expressions by the other agents allowing

i to cause the mechanism to select A and B with one expression, and C and D with another) if,

(
SA

i \ SC
i = SD

i \ SB
i

)
and

(
SC

i \ SA
i = SB

i \ SD
i

)
.

The channel configuration discussed in Lemma 7 generalizes one that appears in the channel-

based representation of a CA where bids are allowed on items only. In fact, it is present in any

combinatorial allocation mechanism whenever it is assumed that an agent’s bid for a bundle is the

sum of its bid on two other non-overlapping bundles (e.g., sub-bundles that compose the full bundle).

This is true even if the bids on the sub-bundles are complex themselves (i.e., assumed to be the sum

of bids on other bundles).

Based on this insight, we can prove that for any combinatorial allocation mechanism where an

agent’s bid on any bundle is the sum of its bid on two other non-overlapping bundles, there exists
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a preference distribution satisfying free disposal (i.e., an agent’s valuation for a bundle of items

is greater than or equal to its valuation for any sub-bundle) where the mechanism cannot achieve

expected efficiency within 5% of the maximum. While 5% may seem like a relatively small gap, it

can be arbitrarily large in absolute terms. Furthermore, it is ten times larger than the expected

efficiency gap found by Nisan and Segal [54] in their prior work on communication complexity in

combinatorial allocation mechanisms. Their result pertains to mechanisms that communicate less

than an exponential number of bits and involves a single prior over preferences. Our result pertains

to limited expressiveness and potentially uses a different prior for each mechanism.

Theorem 6. Consider a combinatorial allocation mechanism, M , which can be represented as a

channel-based mechanism that treats agent i’s bid on any bundle Q to be the sum of its bids on some

two other non-overlapping sub-bundles, q1 and q2. There exists a distribution over agent valuations,

that satisfies the private values and free disposal assumptions, such that M cannot achieve expected

efficiency within 5% of the maximum possible for the setting.

The setting that is used to prove Theorem 6 provides some insight into the circumstances under

which limited expressiveness can be particularly problematic. It involves two agents who care only

about the items with limited expressiveness (i.e., the items in q1 and q2). Each of the agents

has two equally probable types: a complementarity type and a substitutability type. Under the

complementarity type, the agent only derives utility from winning the super-bundle (i.e., the bundle

containing both q1 and q2). Under the substitutability type, the agent derives no additional utility

from winning more than one sub-bundle (either q1 or q2). In other words, we find that expressiveness

is important for combinatorial allocation mechanisms when agents may have either complementarity

or substitutability for the same items.

6 Connections to related research

There has been relatively little work on expressiveness specifically. We discussed some related papers

in the body of this paper. Here we will briefly summarize other work on the most closely related

topics. This work started in economics and has more recently been studied in computer science.

6.1 Informational complexity

At a high level, related questions go back at least to the 1940s when Hayek argued that in distributed

resource allocation, it is not practical to communicate all the distributed information to a central

decision maker [32]. In the 1970s, Mount and Reiter [50] and Hurwicz [35, 36] formalized this in their

theory of informational complexity, which asked the question: at a minimum, how much information

must a mechanism’s message space be able to carry in order to accomplish some design goal (cf. [38])?

That work focused primarily on the number of real-valued dimensions that were needed. It was well

known that in general, as our Proposition 1 shows, the number is always one. To get around Cantor’s

theorem that begets Proposition 1, the economists made some technical assumptions (such as local
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threadedness [50] or Lipschitz continuity [37]) that precluded a general mapping between <n and

<m. Under these assumptions, Proposition 1 does not apply, and the economists proceeded to

compare the informational requirements in different economic settings by comparing the number of

dimensions in each agent’s expression. In contrast, our work does not rely on such assumptions.

In fact, one of our key points is that the dimensionality of the message space is not the essence of

expressiveness. Rather, the essence is how the mechanism is wired to use the different inputs.

6.2 Work based on finding or characterizing equilibria

Another thread of related work has tried to characterize the equilibrium behavior in inexpressive

mechanisms in specific settings. The challenge here is that determining equilibrium behavior is

usually prohibitively difficult even for the simplest non-trivial mechanisms. Furthermore, when a

particular equilibrium is found to have certain properties, one often cannot rule out the possibility

of additional equilibria that do not share those properties.

For example, Rosenthal and Wang [60] examined an auction setting where a series of globally

interested (with nonlinear preferences over different items) and locally interested bidders (with linear

preferences for different items) participate in a set of simultaneous first-price sealed-bid auctions

where each auction is for a single item. Taken together, the auctions constitute an inexpressive

mechanism. The authors were able to construct an equilibrium for each of two regions of the space

of parameter values for the bidder type distributions in their model. They found that these equilibria

were inefficient for most of their model parameter space. However, they were not able to rule out

the possibility that other equilibria exist (although they have not found any) and they were unable

to construct equilibria for some parameter values of their model.

Another example is work by Szentes and Rosenthal [70], who characterized simple efficient equi-

libria in large inexpressive mechanisms when bidders are identical and each wants to win a specified

fraction (more than a half) of the items. The simplicity of this domain illustrates the difficulty

in finding equilibria in inexpressive mechanisms. Problems must typically be severely simplified in

order to gain traction with analytical or computational techniques.

As further illustration of the difficulty of equilibrium finding, Wilenius and Andersson [74] de-

scribed a heuristic method for computing approximate equilibrium strategies in first-price sealed bid

CAs when bidders either bid on all combinations of items, or on one specific combination and the

remaining items individually. They demonstrated the difficulty in finding equilibrium strategies for

CAs when they are not dominant-strategy implementable.

All of the work discussed here suggests that there is little hope for a clear general characterization

of equilibrium strategies in inexpressive mechanisms.

6.3 Expressiveness issues in dominant-strategy mechanisms

There has been some research related to expressiveness issues in dominant-strategy mechanisms.

For example, Blumrosen and Feldman [16] studied the problem of designing a dominant-strategy
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mechanism with a limited number of discrete actions. They showed a trade off between the efficiency

of the best possible dominant-strategy mechanism and the number of discrete actions available to

the designer. Similarly, Ronen [59] described methods for achieving near efficiency with limited

bidding languages in dominant strategies.

Holzman et al. [34] studied CAs where bidders can only bid on restricted sets of bundles. (This is

the restricted outcome setting mentioned in Section 2.) Their work shows that truthful bidding is a

dominant strategy if and only if the restricted bundle set that agents can bid on forms a quasi-field

(and VCG payments are used). They defined a worst-case measure of the economic inefficiency

that may result from restricting bids to smaller and smaller quasi-fields. Parkes [57] and Nisan

and Segal [54] showed that in order to implement VCG payments, a mechanism must elicit enough

information to verify the corresponding universal competitive equilibrium prices.

The restriction to studying dominant-strategy mechanisms imposes severe limitations on the

types of questions about expressiveness that can be addressed. In particular, uncertainty about

others’ private information becomes an issue only when considering mechanisms that do not have

dominant strategies. As we showed, the larger the possible type space of others, the more ex-

pressiveness an agent may need for efficiency. Our results apply to settings where agents do not

have dominant strategies (and to settings where they do). Also, our results are not specific to any

application, such as a CA.

6.4 Applications of expressiveness in mechanisms

One of the first applications to benefit from expressiveness was strategic sourcing. Sandholm [63, 65]

described how building more expressive mechanisms—that generalize both CAs and multi-attribute

auctions—for supply chains has saved billions of dollars that would have been lost due to inefficiency.

Success with expressive auctions in sourcing has also been reported by others [23, 33, 47]. Schoen-

herr and Marbert [68] discussed the difficulty faced by business-to-business auction participants in

choosing bundles to put up for auction ahead of time. This is a problem that exists because these

mechanisms are typically inexpressive: they allow bids on predetermined lots only. If a CA were

used instead, the sellers would not have to choose bundles a priori : the mechanism would determine

the bundles based on the (expressive) bids.

Some work on expressiveness has begun to appear in the context of search keyword auctions (aka

sponsored search). Even-Dar, Kearns and Wortman examined an extension of sponsored search

auctions, whereby bidders can purchase keywords associated with specific contexts [26]. Under

certain probabilistic assumptions they are able to prove that the system becomes more efficient when

this extra level of expressiveness is allowed. It has also been shown that increasing the expressiveness

of today’s sponsored search auctions very slightly by allowing for a premium bid for premium slots

removes most of the inefficiency of today’s design [12]. Also, highly expressive mechanisms have

been designed for trading entire advertising campaigns [17, 73]. Milgrom explores the equilibria

of sponsored search auctions with limited expressive power (specifically, where bidders submit a

single bid to indicate how much they will pay for an ad spot regardless of where it appears on the
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page) [48]. He finds that by limiting expressiveness the auction excludes some bad equilibria. This

raises an important counterpoint to our work. We hope that our framework will help us better

understand the circumstances under which expressiveness actually helps and when it does not. In

another recent paper on sponsored search auctions, Abrams et al. studied the impact of inexpressive

bids on efficiency [1]. They found that in a specific auction mechanism, inexpressiveness can lead

to an arbitrary amount of inefficiency when all bidders are assumed to play the same pure strategy

(regardless of what the strategy is). They proceed to show that the same inexpressive mechanism has

an efficient full information Nash equilibrium even when bidder valuations are more complex. They

consider this surprising, but it is consistent with our general result that very little expressiveness is

needed for efficiency when agents have no uncertainty (Proposition 6).

Another application area that has received recent attention with regard to expressiveness is

wireless spectrum trading. For example, Gandhi et al. [27] described a prototype wireless spectrum

market mechanism. They stressed the importance of allowing spectrum bidders enough expres-

siveness to communicate their needs, and demonstrated—using synthetic demand distributions and

various ad hoc bidder behavior models—that their mechanism has good efficiency properties.

6.5 Bundle pricing and revenue-maximizing CAs

There is an extensive literature on bundle pricing. Allowing a seller to price bundles, rather than

just individual items, can be seen as increasing the seller’s expressiveness. This is also related to our

work on expressiveness. In this subsection we will briefly review some of the bundling literature.

The first mention of being able to increase revenue via bundling is attributed to Stigler in his 1963

discussion of anti-trust Supreme Court rulings over price discrimination via bundling [69]. Bundle

pricing in economics has often focused on analyzing two-product settings to provide insight into the

way monopolies can improve profits by offering goods in bundles [2, 24, 29, 46, 67]. (One exception

is that Armstrong examined n-product settings, but placed severe restrictions on buyers’ utility

functions [4].) This work provided sufficient conditions on when bundling is profitable and optimal

pricing strategies under various assumptions. However, it did not provide generalized algorithms

for determining how to price the bundles, nor did it answer the question of how the increase in

expressiveness affects the buyers’ utility or the efficiency of the market as a whole. There have

also been some human subject experiments that explored how people actually perceive savings in

bundles [75].

Some work on bundle pricing has been done from an operations research perspective as well. For

example, Hason and Martin [31] presented a mixed integer program for optimizing bundle prices

for a handful of market segments. They assumed that each of the segments can be described by a

single value for each bundle, and that the value of every bundle for every market segment is known

in advance. They also did not describe how their bundle pricing strategy compared to using only

item prices. Rusmevichientong et al. investigated the problem of pricing different car configurations

based on data collected by GM’s Auto Choice Advisor web site [61].

There has also been work on pricing bundles of information goods, where it is usually assumed
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that customers care only about how many goods are bundled together (i.e., their valuation for a

bundle depends only on its size, not its contents). For example, Kephart et al. [41] and Brooks

and Durfee [18] described online approaches to pricing in this domain. Additionally, Bakos and

Brynjolfsson provided an analytical treatment of this problem with some valuable insights about

when bundling is profitable [8].

Finally, computer science work on pricing has focused primarily on pricing items rather than

bundles and on “single-minded” customers that desire only one bundle. For example, Balcan et

al. [9, 10] provided online and approximate algorithms for this setting, and Guruswami et. al. [30]

showed that finding the optimal pricing is computationally complex (APX -hard). Some work from

that community, such as the work by Aggarwal et al. [3], considered a more restrictive class of

pricing problems called Max-Buying, where customers buy the most expensive goods they can

afford. Such restricted classes have been shown to be solvable quickly even in the worst case (in

polynomial time).

Related to bundle pricing, there has recently also been significant work on designing high-revenue

CAs (e.g., [5, 7, 39, 56]). The design problem is NP-hard [21], meaning that it is very unlikely that

a short characterization of the answer exists or that any algorithm can compute the answer quickly

in the worst case (in polynomial time). There has been recent work on algorithms for automatically

designing high-revenue CAs (e.g., [43, 44]). This work has followed two paths: designing algorithms

that provide logarithmic approximations to revenue while running fast even in the worst case, and

designing algorithms that yield very high revenue in practice, but do not provide worst-case guar-

antees on solution quality or run time.

7 Conclusions and future research

A recent trend in (electronic) commerce is a demand for higher levels of expressiveness in the

mechanisms that mediate interactions such as the allocation of resources, matching of peers, or

elicitation of opinions. In this paper we provided the first general model of expressiveness for

mechanisms. Our model included a new expressiveness measure, maximum impact dimension, that

captures the number of different ways an agent can impact the outcome of a mechanism. We

also introduced two related measures of expressiveness based on the concept of shattering from

computational learning theory.

We then described perhaps the most important property of our domain-independent expressive-

ness notions: how they relate to the efficiency of the mechanism’s outcome. We derived an upper

bound on the expected efficiency of a mechanism’s most efficient equilibrium that depends only on

the extent to which agents can impact the mechanism’s outcome. This bound enables us to study

the relationship between expressiveness and efficiency by avoiding two major classic hurdles: 1) the

bound can be analyzed without having to solve for an equilibrium of the mechanism, and 2) the

bound applies to the most efficient equilibrium so it can be used to analyze mechanisms with multiple

(or an infinite number of) equilibria. We proved that this bound increases strictly monotonically for
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the best mechanism that can be designed as the limit on any agent’s expressiveness increases (until

the bound reaches full efficiency). In addition, we proved that a small increase in expressiveness

can lead to arbitrarily large increases in the efficiency bound, depending on the prior over agents’

preferences. We ended the discussion with proof that the bound is tight in private values settings: it

is always possible to build a strongly budget balanced payment function that achieves the efficiency

of the bound in Bayes-Nash equilibrium (with ex ante but not necessarily ex interim individual

rationality). This implies that for any private values setting, the expected efficiency of the best

Bayes-Nash equilibrium increases strictly as more expressiveness is allowed. However, we showed

that unlike with full expressiveness, implementing the bound is not always possible in dominant

strategies with less than full expressiveness.

Next, we explored the relationship between our expressiveness measures and communication

complexity. We showed that the expressiveness measures can be used to derive both upper and

lower bounds on the number of bits used by the best communication protocol for running any

mechanism.

Finally, we instantiated our model of expressiveness for a class of mechanisms, called chan-

nel based. This class involves mechanisms that take expressions of value through channels from

agents to outcomes, and select the outcome with the largest sum. Many mechanisms for trading

goods, information, and services—such as combinatorial auctions, exchanges, and multi-attribute

auctions—can be cast as channel-based mechanisms. We showed that our domain-independent mea-

sures of expressiveness appropriately relate to a natural notion of expressiveness in channel-based

mechanisms, the number of channels allowed (which already generalizes a traditional measure of

expressiveness in CAs called k-wise dependence [22]). Using our general measures of expressiveness

and the results on how they relate to efficiency, we proved that in channel-based mechanisms 1)

increasing expressiveness by allowing an additional channel leads to an increase in the upper bound

on expected efficiency for the mechanism, and 2) under some preference distributions this leads to

an arbitrarily large increase in the bound. We also used our theoretical framework to prove that for

any (channel-based) multi-item allocation mechanism that does not allow rich combinatorial bids,

there exist distributions over agent preferences that satisfy the free disposal condition for which the

mechanism cannot achieve 95% of optimal efficiency. This inefficiency is ten times larger than a

related expected efficiency gap found by Nisan and Segal [54] in their prior work on communication

complexity in combinatorial allocation mechanisms.

The framework we developed enables one to understand mechanisms from a new perspective

and opens the door for a possible new avenue of research within mechanism design. In addition to

the theoretical contributions of this work, we already see two practical uses for our expressiveness

measures. First, they can be used to bound the efficiency—and therefore provide a lower bound

on inefficiency—of existing mechanisms. Second, they can be used to aid in the design of new

mechanisms, whether the design is done by hand or by computer.
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Appendix: Proofs of all technical claims

Proof of Proposition 1. Given a mechanism with reportable type space in <d, we can construct an

equivalent mechanism with reportable type space in < with an injective mapping from <d to <.

Then, when an agent makes a report in <, we use the reverse mapping and act as if the agent had

expressed the corresponding point in <n to the original mechanism.

One way to construct the injective mapping is as follows. Let σj
i be the ith bit (or digit) of

the real number that the agent expresses for dimension j ∈ {1, 2, . . . , n}. Let pk be the kth prime

number. Our desired number in < is given by,

∏

i

∏

j

(p(i−1)n+j)σj
i .

Proof of Proposition 2. Every time we allow agent i to (semi-)shatter a new outcome, the most

expressive possible mechanism allows the agent to distinguish among all of the impact vectors it had

previously distinguished between, plus one additional impact vector (the impact vector that was

preventing it from (semi-)shattering that outcome).

Proof of Proposition 3. The number of possible impact vectors for agent i with k different outcomes

when the other agents have types T−i is |T−i|k. Shattering requires that an agent be able to

distinguish among each of these vectors, thus its maximum impact dimension must be greater than

or equal to this amount.

Proof of Proposition 4. The following reasoning demonstrates that Equation 2 is a valid upper bound

on the maximum attainable expected efficiency by any mechanism using the outcome function f .

Etn [E(f)]+ =
∫

tn∈T n

P (Tn = tn)
∫

θn∈Θn

P (m(tn) = θn)W (f(θn), tn)

≤ max
B(·)

∫

tn∈T n

P (Tn = tn)
∫

θn∈Θn

P (B(tn) = θn)W (f(θn), tn)

= max
B̂(·)

∫

tn∈T n

P (Tn = tn)W (f(B̂(tn)), tn)

= max
B̂(·)

∫

tn∈T n

P (Tn = tn)W (f({B̂1(t1), . . . , B̂n(tn)}), tn).

The step between the second and third equations follows from the fact that one of the maxima

of the function in the second equation must have each entry of B(·) (a function that maps every

type vector to a mixed strategy profile) as a point mass. There is at least one single pure strategy

combination for each type vector that leads to the outcome with highest welfare, thus there is no

reason to consider mixed strategies in this bound. The last step is valid because the strategy of each

agent can depend only on its own private type.
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Proof of Proposition 5. First we will prove the forward implication, namely that the upper bound

reaches full efficiency if any agent can distinguish among each of the impact vectors in at least one

of its fully efficient sets.

The fact that some agent, i, can distinguish among each of the impact vectors in some fully

efficient set, G∗i , implies that there is a pure strategy for agent i, hi, which is a mapping from its

types to expressions, and a pure strategy profile for the agents other than i, h−i, mapping from each

of their types to expressions, that causes the most efficient outcome to be chosen by the mechanism

for every possible combination of types. If we set B̂(tn) = {hi(ti), h−i(t−i)}, then E[E(f)]+ will

reach full efficiency.

Now we will prove the backward implication, namely that if any agent cannot distinguish among

each of the impact vectors in at least one of its fully efficient sets, then the upper bound cannot

reach full efficiency.

Let agent i be an agent that cannot distinguish among each of its impact vectors in any of its

fully efficient sets. Consider any set of impact vectors that agent i can distinguish among, Gi. Based

on the predicate of the proposition, at least one of the impact vectors, g∗i , corresponding to the fully

efficient outcomes when agent i has type t∗i , cannot be expressed by agent i. This means that no

matter which strategies the agents other than i choose, at least one of the outcomes chosen by the

mechanism when agent i has type t∗i will be less than fully efficient.

Proof of Proposition 6. In these settings, as soon as agent i knows its own type it knows for certain

the single most efficient outcome. It never needs to distinguish among more than one-dimensional

impact vectors and there are only |O| such vectors.

Proof of Corollary 1. This follows directly from Propositions 5 and 6.

Proof of Theorem 1. The set of mechanisms allowing agent i maximum impact dimension di is a

super-set of the mechanisms allowing agent i maximum impact dimension d′i < di. Thus, the fact

that the bound for the best mechanism increases weakly monotonically is trivially true for any

increase in di. The challenge is proving the strictness of the monotonicity.

Consider increasing di from d
(1)
i < d∗i to d

(2)
i > d

(1)
i . Let G

(1)
i be the best (for efficiency) set of

impact vectors that agent i can distinguish among when restricted to d
(1)
i vectors (i.e., the set of

d
(1)
i impact vectors that maximize the upper bound on expected efficiency). We know that there are

at least d∗i − d
(1)
i ≥ 1 impact vectors corresponding to fully efficient sets of outcomes that cannot be

expressed by agent i, and thus at least that many fully-efficient impact vectors are absent from G
(1)
i .

When we increase our expressiveness limit from d
(1)
i to d

(2)
i , we can add one of those missing vectors

to G
(1)
i to get G

(2)
i . Since G

(2)
i allows agent i to distinguish among all the same vectors as G

(1)
i and

an additional vector which corresponds to a fully efficient set of outcomes, the new mechanism with

maximum impact dimension d
(2)
i has a strictly higher expected efficiency bound.

Proof of Corollary 2. This follows directly from Theorem 1 and Proposition 2.
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Proof of Lemma 1. Start with any number of outcomes and any number of types for the agents other

than i with equal likelihood (and let the probability of any particular set of types for the agents

other than i be independent of i’s type). Choose a set, Gi, of unique impact vectors for agent i with

size di. Construct one non-zero probability type for agent i for each impact vector in Gi, tg
(j)

i . Set

the total welfare of all agents, as shown below, to an arbitrarily large number for every combination

of joint types corresponding to the impact vectors in Gi (in an interdependent values setting their

are no restrictions on the agent’s utility functions, so the welfare function for each set of joint types

can be constructed arbitrarily):

∀gi ∈ Gi, ∀t−i, W (gi(t−i), {t(gi)
i , t−i}) = M.

If agent i cannot distinguish among all of the di impact vectors, then the efficiency bound will be

arbitrarily smaller than if it could. Thus, for the best outcome function, the move from di − 1 to di

results in an arbitrary increase in the bound on efficiency.

Proof of Lemma 2. The part that applies to the interdependent values setting follows directly from

Lemma 1, since decreasing ki by one also decreases di by at least 1.

To prove the implication for private values, we will construct a setting (i.e., utilities, types, and

outcomes), such that agent i must be able to semi-shatter an outcome space of size ki in order

to avoid the upper bound being arbitrarily lower than full efficiency. Our constructed setting can

have any number of outcomes, any number of other agents, and any number of joint types for the

other agents. However, in order to assign the total utility of the other agents for each of their joint

types in an arbitrary way, we will limit every other agent except for one, agent j, to a single type

(agent j will have |T−i| types). We will set the utility of every agent other than i and j to 0 in all

circumstances and build our construction using only these two agents.

We will start with a set of outcomes, O′, that has size ki (if ki = 1 the rest of this proof is trivial,

if every single outcome provides an arbitrary amount of welfare then not being able to make any one

of them happen will lead to arbitrary inefficiency). We will assume, without loss of generality, that

the outcomes in O′ are the only outcomes that any of the agents derive utility from. We will also

assume that there is some strict ordering on the outcomes, from o1 to oki , and on agent j’s types,

from t
(1)
j to t

(|Tj |)
j .

We will now describe how to set the utility of agent j for every outcome under every one of

its types. Our construction sets agent j’s utility for any outcome, om, under each of its types to

be arbitrarily larger than for the outcome preceding it in the strict ordering, om−1, with the first

outcome always leading to utility 0. For a fixed one of agent j’s types, all of the differences in

utility for successive outcomes will be the same size. However, the gap amount (i.e., the difference

in utility between om and om−1) will increase by an arbitrary amount for each successive successive

type. This results in agent j’s utility under each of its types being a step function over the strictly

ordered outcomes in O′, with the step sizes increasing for each successive type. Formally, we will
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set agent j’s utility function in the following way (let M be an arbitrarily large number),

(∀m,∀l) vj(ol, t
(m)
j ) = (l − 1× ((m− 1)× 2×M) .

Now for each of the
(|O′|

2

)
unordered pairs of outcomes, oa and ob (where a is always before b in our

strict ordering), we will construct a set of |Tj | types for agent i, which we will call T
(a,b)
i . Agent i’s

utility under all of the types in T
(a,b)
i will be hugely negative for all outcomes other than oa and

ob (this value does not have to be negative infinity, just arbitrarily lower than the total welfare of

any outcome under any circumstance), thus causing an arbitrary loss of efficiency if either of these

outcomes is not chosen. Again, we will assume a strict ordering on the types in T
(a,b)
i , from 1 to

|Tj |. Agent i’s utility for ob under each of the types in T
(a,b)
i will be set to the arbitrarily large

number M , and for oa (the typically less preferred outcome by agent j since it comes earlier in the

ordering) will be set to successively increasing multiples of the distance between the outcomes in

the strict ordering times twice the arbitrarily large number used above, (i.e., (b − a) × 2 ×M). In

other words, oa will provide successively more utility to agent i as its type increases from 1 to |Tj |.
Formally, we will set agent i’s utility under the types in T

(a,b)
i to be the following,

(
∀m | t(m)

i ∈ T
(a,b)
i

)
vi(ob, t

(m)
i ) = M

(
∀m | t(m)

i ∈ T
(a,b)
i

)
vi(oa, t

(m)
i ) = (m− 1)× (b− a)× 2×M

(
∀oj ∈ O \ O′,∀m | t(m)

i ∈ T
(a,b)
i

)
vj(oj , t

(m)
i ) = −∞.

When t
(m)
i is matched with t

(m)
j , the total welfare of outcome ob will be at least M larger than the

total welfare of oa. However, for all of j’s types smaller than m the opposite will be true.

W (ob, {t(m)
i , t

(m)
j }) = M + [(b− 1)× (m− 1)× 2×M ]

W (oa, {t(m)
i , t

(m)
j }) = [(b− a)× (m− 1)× 2×M ] + [(a− 1)× (m− 1)× 2×M ]

= [(b− 1)× (m− 1)× 2×M ] .

By constructing the utility functions in this way we have guaranteed that for any pair of agent j’s

types, t
(m)
j and t

(m′)
j (where m < m′ in our strict ordering), there is a type for agent i that requires

ob to happen against t
(m)
j and oa against t

(m′)
j to avoid an arbitrary loss in efficiency (because any

other outcome would lead to at least M less welfare).

Now, we can repeat this process for each pair of outcomes in O′ by constructing types for agent

i that select the pair. This guarantees that agent i must be able to make every pair of outcomes

happen against every pair of agent j’s types in the same order, or else face an arbitrary loss of

efficiency in some non-zero probability combination of types. This is equivalent to saying that agent

i must be able to semi-shatter the outcome space O′ in order to avoid an arbitrary decrease in the

expected efficiency bound.

Proof of Lemma 3. Let agent i’s utility for outcomes o1 and o2 under type t
(1)
i and t

(2)
i be denoted

as X and Y , respectively. For the agents other than i, let the sum of their utilities for the outcomes

iv



o1 and o2 under types t
(1)
−i and t

(2)
−i be denoted as a and b, and a′ and b′, respectively. We wish to

show that the ordering on efficient outcomes imposed by this collection of types cannot be reversed.

Formally,

(X + a > Y + b) and (Y + b′ > X + a′) ⇒

¬ (∃X ′, Y ′) (X ′ + a < Y ′ + b) and (Y ′ + b′ < X ′ + a′) .

We will proceed by assuming this is true, namely that there exists an X ′ and Y ′ that satisfy the

second set of inequalities, and show that it leads to a contradiction. If all of the inequalities implied

by this assumption held we would have the following,

b− a < X − Y < b′ − a′

b′ − a′ < X ′ − Y ′ < b− a,

Contradiction.

Proof of Theorem 2. The forward implication in both settings follows directly from Lemma 2. The

backward implication in the interdependent values setting follows from Lemma 1 and Proposition 5

(since there will always be a fully efficient set that contains every possible impact vector). In the

private values setting, the backward implication is implied by Lemma 3, since it proves that it is

never necessary for full efficiency in such settings to shatter any set of outcomes (only to semi-shatter

them).

Proof of Theorem 3. Let h∗I be a pure strategy profile that achieves the expected efficiency of the

bound E [E(f)]+. For shorthand, let h∗(ti) be agent i’s expression under type ti and the pure

strategy profile h∗, and let h∗(t−i) denote the expressions of the agents other than i under that

profile.

Consider the class of payment functions, π+, that charges agent i some constant function of the

other agent’s expressions minus the expected welfare of the other agents, given that agent i expresses

θi and the other agents play the pure strategies denoted by h∗,

π+
i (θi, θ−i) = Ci(θ−i)− Et−i [W−i(f(θi, h

∗(t−i)), t−i)].

Now, we will prove that under any payment function in the class π+ the pure strategy profile h∗

is a Bayes-Nash equilibrium. The following inequality implies that it is always (weakly) preferable

in expectation over the types of the agents other than i for agent i, under any type ti, to report

h∗(ti) rather than a different expression, assuming that the other agents play according to h∗ as

well. (In the first equation, agent i’s payment is outside of the expectation since it does not depend

on the types of the other agents, and we omit the Ci terms since they do not depend on agent i’s

expression.)

E [vi (f(h∗(ti), h∗(t−i)), ti)]− π+
i (h∗(ti), h∗(t−i)) ≥ E [vi (f(θ′i, h

∗(t−i)), ti)]− π+
i (θ′i, h

∗(t−i))
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E[vi(f(h∗(ti), h∗(t−i)), ti)] + E[W−i(f(h∗(ti), h∗(t−i)), t−i)] ≥
E[vi(f(θ′i, h

∗(t−i)), ti)] + E[W−i(f(θ′i, h
∗(t−i)), t−i)].

The left-hand side of the final inequality is the expected welfare when the agents play the pure

strategy profile h∗ and agent i has type ti. The right-hand side is the expected welfare when agent i

deviates from h∗ under type ti. This inequality holds because it is impossible for any deviation from

h∗ to increase expected welfare. Based on our assumptions, it would have to already be reflected in

h∗.

Proof of Proposition 7. We can set the Ci in term π+
i for each agent to be the average expected

total payment to all other agents. This amount does not depend on the agent’s own expression, and

it gives strong budget balance because each agent pays an equal share of the total payments made

to the other agents.

The following reasoning proves that the resulting mechanism is ex ante individually rational (i.e.,

that any agent’s utility for participating is always positive in expectation, prior to learning its own

type). E[ui], the expected utility of agent i, is given by the following.

Et[ui] = Et

[
vi (f(h∗(ti), h∗(t−i)), ti)− π+

i (h∗(ti), h∗(t−i))
]

= Et


W (f(h∗(t)), t)− 1

(n− 1)


∑

j 6=i

∑

k 6=j

vk (f(h∗(tk), h∗(t−k)), tk)







0 ≤ Et

[
W (f(h∗(t)), t)−

(
vi(f(h∗(t)), ti) +

(n− 2)
(n− 1)

W−i(f(h∗(t)), t−i)
)]

Proof of Theorem 4. We will prove this by showing that the outcome function implementing our

bound under a limit on expressiveness does not necessarily satisfy the weak-monotonicity (W-Mon)

property, which has been shown to be a necessary condition for dominant-strategy implementa-

tion [14].

Consider the following example where agent one has three types and agent two has two types.

The agents’ valuations for each of three different outcomes are given below.

Agent 1





type A B C

t
(1)
1 14 0 0

t
(2)
1 0 0 0

t
(3)
1 1 0 12

Agent 2





type A B C

t
(1)
2 11 13 0

t
(2)
2 10 0 0

Under the valuations given above, the total social welfare of each outcome is given by the following

table (the welfare of the most efficient outcome associated with each joint type is shown in bold).
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Outcome t
(1)
1 , t

(1)
2 t

(1)
1 , t

(2)
2 t

(2)
1 , t

(1)
2 t

(2)
1 , t

(2)
2 t

(3)
1 , t

(1)
2 t

(3)
1 , t

(2)
2

A 25 24 11 10 12 11

B 13 0 13 0 13 0

C 0 0 0 0 12 12

Consider a direct-revelation mechanism with a socially optimal outcome function, f . The impact

vectors with the highest social welfare for agent one correspond to [A,A], [B, A], and [B,C] (these

are the outcomes with the greatest welfare under each combination of types). If we are forced to

design an outcome function that limits agent one to maximum impact dimension d1 ≤ 2 and the

type t
(2)
1 is highly unlikely (e.g., P (t(2)1 ) = ε), then the outcome function with the highest expected

welfare will provide agent one with the impact vectors, [A, A], [A,A] and [B, C].

The W-Mon property states that the following inequality must hold for all t1, t
′
1, and t2,

v1(f(t1, t2), t1)− v1(f(t′1, t2), t1) ≥ v1(f(t1, t2), t′1)− v1(f(t′1, t2), t
′
1).

If we use t
(2)
1 and t

(3)
1 for t1 and t′1, respectively, and t

(1)
2 for t2, then we can rewrite the inequality

for our limited-expressiveness mechanism as follows,

v1(f(t(2)1 , t
(1)
2 ), t(2)1 )− v1(f(t(3)1 , t

(1)
2 ), t(2)1 ) ≥ v1(f(t(2)1 , t

(1)
2 ), t(3)1 )− v1(f(t(3)1 , t

(1)
2 ), t(3)1 )

v1(A, t
(2)
1 )− v1(B, t

(2)
1 ) ≥ v1(A, t

(3)
1 )− v1(B, t

(3)
1 ).

This inequality is violated by the valuation functions in our example, so the inexpressive mechanism

cannot be implemented in dominant strategies.

Proof of Proposition 8. Suppose the opposite: that agent i has maximum impact dimension di under

f , and there exists an outcome function, f ′, that emulates f while providing agent i with less than

di expressions. Let Gi be one of the largest sets of impact vectors that the agent can distinguish

among under f (i.e., |Gi| = di and Di(Gi) is true), let h−i be a strategy by the other agents that

allows i to distinguish among the vectors in Gi under f , and let q be the mapping that allows f ′ to

emulate f .

Since di expressions are needed to distinguish among each of the different impact vectors in Gi,

our assumption implies that there will be at least two distinct impact vectors in Gi that agent i

cannot distinguish among under f ′. Let these be denoted as g
(1)
i and g

(2)
i . Since g

(1)
i and g

(2)
i are

distinct, there must be at least one joint type for the agents other than i, t−i, such that they map to

different outcomes. Furthermore, the impact vectors are expressible under f , so it must be possible

for agent i to cause both the outcome mapped by g
(1)
i and the outcome mapped by g

(2)
i under t−i

to be chosen by f (i.e., there exists a θ
(1)
i and θ

(2)
i such that f(θ(1)

i , h−i(t−i)) 6= f(θ(2)
i , h−i(t−i))).

However, since agent i cannot distinguish between g
(1)
i and g

(2)
i under f ′, θ

(1)
i and θ

(2)
i must map

to the same expression under q. Thus, we get the following starting from the equation above,
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f ′(qi(θ
(1)
i ), q−i(h−i(t−i))) 6= f ′(qi(θ

(2)
i ), q−i(h−i(t−i)))

f ′(qi(θ
(1)
i ), q−i(h−i(t−i))) 6= f ′(qi(θ

(1)
i ), q−i(h−i(t−i))).

Contradiction.

Proof of Lemma 4. If one of the agents other than i lies, the number of impact vectors that agent

i can distinguish among can only decrease. Any impact vector that was distinct because of an

outcome chosen under the type that is now being reported untruthfully will no longer be distinct,

and no new impact vectors can become distinct because of the lie.

Proof of Proposition 9. We have already shown in Proposition 8 that no outcome function can em-

ulate f using fewer expressions for each agent, i, than its maximum impact dimension under f , di.

We will now show that if f is a direct-revelation outcome function, it is always possible to emulate it

using exactly di expressions for each agent. To prove this, we will use Lemma 4, which implies that

we can construct a mapping from expressions under f to expressions under f ′ such that any two

types resulting in the same impact vector under f are also mapped to the same expression under

f ′. We can set the outcomes in f ′ as follows,

f ′(qi(ti), q−i(t−i)) = f(ti, t−i).

This will produce a valid mapping because the types that map to to the same expression will result

in the same outcome for all joint types of the other agents.

Proof of Corollary 3. From Theorem 1, we know that this is true for maximum impact dimension.

From Proposition 8, we know that the set of outcome functions that limit agent i to di expressions

does not include any outcome functions where agent i has maximum impact dimension greater than

di. A direct-revelation mechanism can always be designed to maximize the bound subject to a limit

on expressiveness, and that outcome function can be emulated by one that provides di expressions

to each agent i.

Proof of Corollary 4. This follows directly from Theorem 2, which states that an agent may need

to shatter its entire outcome space to avoid arbitrary inefficiency, and Proposition 3, which states

that |T−i||O| expressions are needed needed to shatter an outcome space.

Proof of Lemma 5. Let Θ−i be expressions for the agents other than i that allow agent i to shatter

T−i (if f is a direct-revelation mechanism these two sets will be identical). Construct a total ordering

of Θ−i so that for any pair, θj
−i and θk

−i (where j < k), and any expression by agent i, θi ∈ Θi, that

causes the mechanism to choose A and B when the other agents express θj
−i and θk

−i, A is chosen

for θj
−i and B for θk

−i. If this condition is not met, we can simply switch j and k. Re-labeling all of

the expressions to satisfy this condition is possible because of the semi-shattering requirement that,

under any strict ordering of the expressions of the agents other than i, all expressions by agent i in

Θi that cause outcomes A and B to be chosen by f do so in the same order.

viii



Consider a subset of expressions by agent i, Θ′i, that allow it to choose between A and B for each

of the immediately subsequent, or neighboring, pairs of expressions by the agents other than i. In

other words, there exists at least one θ′i ∈ Θ′i, such that f chooses A and B under the expression pairs

(θ′i, θ
j
−i) and (θ′i, θ

j+1
−i ), for all j. Additionally, order Θ′i so that an expression that chooses between

A and B when the other agents express θ1
−i and θ2

−i is the first in the ordering. This expression is

then followed in the ordering by one that chooses between A and B when the other agents express

θ2
−i and θ3

−i, and so on until the last of the neighboring pairs of θ−i’s is reached.

Under this ordering, none of the |T−i| − 1 pairs of expressions along the diagonal of an input

matrix corresponding to agent i’s expressions in Θ′i (i.e., pairs of the form (θ′ji , θj
−i)) can be in the

same A-monochromatic rectangle. To see this, consider that whenever θ′ji is matched against an

expression larger than θj
−i, the outcome function does not choose A (since we ensured that A’s

always come before B’s). Thus, all of the A’s in the reduced input matrix corresponding to Θ−i and

Θ′i are to the left of the diagonal (in a triangle pattern) and the diagonal is all A’s. This implies

that each of the pairs to the left of the diagonal must be in a different A-monochromatic rectangle,

since they all result in the same value but are different when crossed with any other member of the

set. We can reverse the total ordering of Θ−i and make the same argument for B-monochromatic

rectangles.

Proof of Theorem 5. The upper bound follows directly from Propositions 8 and 9, since they imply

that an agent’s maximum impact dimension is an upper bound on the number of messages needed

by the best communication protocol for running f . The lower bound follows from Lemma 5, since

it implies that if agent i can semi-shatter a set of types containing some outcome o, T o
−i, there must

be at least |T o
−i|− 1 monochromatic rectangles for outcome o in any partitioning of f ’s input matrix

from i’s perspective. It has been previously shown that each rectangle requires at least one message

in any communication protocol [42].

Proof of Proposition 10. We will prove this statement for the semi-shatterable outcome dimension,

ki, which will imply it is true for maximum impact dimension as well (based on Proposition 2).

Consider any channel-based mechanism that assigns ci channels to agent i and allows it a semi-

shatterable outcome dimension ki < |O|. We will assume from here on that ki ≥ 2, since if ki = 1

the theorem is trivially true (we can build a fully expressive VCG mechanism over 2 outcomes with

a single channel and thus adding a channel will definitely increase ki to at least 2).

Let the largest set of outcomes that agent i can semi-shatter over in this mechanism be O′. There

is a non-empty set of outcomes missing from O′, we will call that O∗ = O\O′. Now consider adding

one channel for agent i to the mechanism and connecting it to one of the outcomes o∗ ∈ O∗. The

agent can still semi-shatter over O′, since it can just ignore the new channel. However, it can now

also semi-shatter a larger set, O′ ∪ {o∗}.
With the additional channel connected to o∗ the agent can control the amount of utility it reports

on this outcome arbitrarily (without affecting its reports on any other outcomes). Consider any pair

of outcomes in the original set, o′1, o
′
2 ∈ O′. Agent i can now make o∗ happen against any type
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where either of those outcomes happened in the old mechanism by setting its report on the new

channel to be ε greater than the sum of its reports on the channels connected to the outcome it

used to select. Formally, if Ci is the channel mapping from the original mechanism, then we can

translate any report in the old mechanism, θi, to a report in the new mechanism, θ∗i , which causes

o∗ to happen whenever any other outcome, o′, did previously.

(∀j | 1 ≤ j ≤ ci) θ∗i,j = θi,j

θ∗i,c1+1 =
∑

j∈Ci(o′)

θij + ε.

Since agent i can do this with both outcomes from the original semi-shatterable set, we have

confirmed that it has reports in the new mechanism that make o∗ happen with every pair of outcomes

in O′ (this is an inductive argument, since each of those outcomes had this property before).12 Thus,

agent i can semi-shatter the new larger outcome set using the additional channel.

Proof of Corollary 5. The fact that the bound is weakly monotonic is true because the extra channel

can always be ignored. The fact that the increase can be arbitrarily large follows directly from

Proposition 10 and Lemma 2 (since increasing the number of channels by one can be used to increase

the agent’s semi-shatterable outcome dimension).

Proof of Proposition 11. This proof is based on a pigeon hole argument. With fewer than dlog2(|O|)e
channels there will be at least two outcomes connected to the exact same set of channels. If agent i

has Ci channels, then it has 2|Ci| sets of channels. When Ci is small the number of sets of channels

will be less than the number of outcomes,

Ci < dlog2(|O|)e ⇒ 2Ci < |O|.

This will prevent the agent from forcing the mechanism to choose both of those outcomes with

different expressions, since the agent’s own contribution to the two outcomes will always be identical.

Proof of Proposition 12. We will show that no agent can shatter any set of two outcomes against

any two types, even when it has a channel dedicated solely to each of the two outcomes (so that

it can place an arbitrary amount of value on either outcome). This implies that it is impossible to

shatter any larger set of outcomes or types in any channel-based mechanism.

We will assume, for contradiction, that there is some agent i that can shatter a pair of outcomes

A and B in a channel-based mechanism. Let agent i’s total channel value connected to outcome A

be X and let its total channel value connected to B be Y . Consider two types for the agents other
12We have assumed the agent was not using the tie-breaking properties of the original mechanism to shatter the

outcomes. If this assumption does not hold, the proof is still valid as long as the mechanism always breaks ties

consistently (i.e., when the channels connected to outcomes o1 and o2 have the same sum it always chooses either o1

or o2).
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than i, t
(1)
−i and t

(2)
−i , and the reports mapped to them under any pure strategy, θ

(1)
−i and θ

(2)
−i . Let

the sum of the reports by the other agents on the channels connected to A be denoted a1 and a2

under the first and second expressions, respectively. Likewise, let b1 and b2 be the sum of the reports

on B. We have assumed (for contradiction) that there exists an X, Y , X ′ and Y ′ that satisfy the

following inequalities.

A against 1, B against 2





X + a1 > Y + b1

Y + a2 > X + b2

B against 1, A against 2





Y ′ + b1 > X ′ + a1

X ′ + a2 > Y ′ + b2.

This leads directly to the following.

b1 − a1 < X − Y < b2 − a2

b2 − a2 < X ′ − Y ′ < b1 − a1.

Contradiction.

Proof of Corollary 6. This follows directly from Proposition 12 and Lemmas 1 and 2.

Proof of Proposition 13. With |O| − 1 channels, we can construct a VCG outcome function in the

following manner. For each agent i, connect each of i’s channels to a different outcome, leaving one

outcome with no channel from that agent. The agent then reports its utility under each outcome

relative to the outcome with no channels. The mechanism chooses outcome whose channels have the

largest sum, which is equivalent to choosing the welfare-maximizing outcome. The payment rule will

not be affected by the fact that each agent is reporting its utility relative to a particular outcome.

To see this, consider the VCG (i.e., Clarke tax) payment of any agent i. This payment is equal to

the total difference in utility of the other agents, had agent i not participated. Let the outcome with

agent i in the mechanism be A, and the outcome without agent i be B. Let the outcome with no

channels attached be oj , for every agent j. Then we have the payment for agent i as,

πi =
∑

j

(vj(A, tj)− vj(oj , tj))−
∑

j

(vj(B, tj)− vj(oj , tj))

=
∑

j

(vj(A, tj)− vj(B, tj))−
∑

j

(vj(oj , tj)− vj(oj , tj))

=
∑

j

(vj(A, tj)− vj(B, tj)) .

Since the vj(oj , tj) terms drop out of this equation, having every agent report their utility for every

outcome minus their utility for one particular outcome does not effect the calculation. This shows

that the payment rule can be properly calculated even when each agent has a single outcome with

no channels.
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Using a pigeon hole argument, we can see that an agent with fewer than |O| − 1 channels will

either have at least two sharing a channel, making it impossible for that agent to express arbitrary

non-linear utility for every outcome (a requirement for implementing a VCG mechanism), or it will

have two outcomes without a channel, making it impossible for that agent to express any preference

for one of the outcomes.

Proof of Lemma 6. We will prove only the forward implication. Once that is proved, the backward

implication will be trivial since we can just switch the labels of C and D. From the predicate, we

have (A \ C = D \B), which implies that every element, x, in A and not in D is in either B or C,

and every element, y, in A and B must also be in C (if y were not in either C or D, or if y were in

only D, it would contradict the predicate). Thus, the difference between A and D must be contained

completely in C (i.e., (A \D) ⊆ C). The following reasoning proves the rest of the claim,

A \D ⊆ C

A \D = C \ (C \A)

= C \ (B \D)

= C \B.

The last step is valid because we know that no elements from D can be in the set on the right-

hand side, once all the operators are applied (since the left-hand side involves removing all elements

in D from A). Thus, it cannot make a difference if we leave them in B before subtracting it from

C, since the set minus operator in the parentheses on the right-hand side only serves to maintain

the elements from D in the resulting set. This same logic can be repeated for other half of the

conjunction in the predicate.

Proof of Lemma 7. From Lemma 6, in addition to our predicate, we know that the following must

also be true (we drop the i subscript on the channel sets for shorthand, since all sets of channels

discussed in this proof belong to agent i),

(
SA \ SD = SC \ SB

)
and

(
SD \ SA = SB \ SC

)
.

We will assume, for contradiction, that agent i can semi-shatter both pairs of outcomes, {A, B}
and {C, D}. From Observation 1, we know that in order for i to be able to semi-shatter a set of

outcomes, it must be able to semi-shatter it for any pair of types of the other agents. Thus, there

must be at least one pair of reports by the agents other than i, θ
(1)
−i and θ

(2)
−i , such that agent i

can cause all four outcomes to happen (although we are considering semi-shattering, so the order in

which they happen does not matter). Let the sum of the reported channels under the first (second)

profile for the other agents connected to outcome A be a1 (a2), to outcome B be b1 (b2), and so on.

We will assume, without loss of generality, that b1−a1 < b2−a2 and that A will happen against

θ
(1)
−i and B will happen against θ

(2)
−i (if the inequality does not hold, we can reverse the labels on the

θ−i’s). In order to cause A to happen against the first opponent profile, and B against the second,

the following inequalities must hold (from here on we use the shorthand SA to denote the sum of
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agent i’s report on the channels in SA, and we assume that ties are broken consistently so that an

agent cannot use them to semi-shatter).

A happens against 1





SA + a1 > SB + b1

SA + a1 > SC + c1

SA + a1 > SD + d1

B happens against 2





SB + b2 > SA + a2

SB + b2 > SC + c2

SB + b2 > SD + d2

Let the difference between the sum of channels in SA and SC be denoted S1 (i.e., SA−SC = S1).

From the predicate, we have that SD − SB = S1. This is because the channels that are in SA and

not SC are the same as those that are in SD and not SB . Additionally, the channels in SC that

are not in SA are the same as those that are in SB and not SD. Let the difference in the sum of

the channels in SA and SD be denoted by S2. This leads the following equality, which is implied by

Lemma 6: SA − SD = SC − SB = S2. Now the equations above simplify to the following.

b1 − a1 < SA − SB < b2 − a2

c1 − a1 < S1 < b2 − d2

a1 − d1 < S2 < b2 − c2

In order to semi-shatter C and D, with C happening against the first report by the other agents

and D against the second, we have the following inequalities generated in the same fashion.

c1 − d1 < SC − SD < c2 − d2

b2 − d2 < S1 < c1 − a1

b1 − c1 < S2 < a2 − d2

In order to semi-shatter over C and D in the opposite direction (with D first and C second) the

constraints would change to the following.

c2 − d2 < SC − SD < c1 − d1

b1 − d1 < S1 < c2 − a2

b2 − c2 < S2 < a1 − d1

Our assumption that agent i could semi-shatter both sets of outcomes under a single pair of types

leads to a contradiction, since the following sets of constraints would have to be satisfied.

c1 − a1 < b2 − d2

b2 − d2 < c1 − a1
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or,

c2 − b2 < a1 − d1

a1 − d1 < c2 − b2

Contradiction.

Proof of Theorem 6. We will prove this by providing a distribution over valuations such that a

channel-based mechanism that treats agent one’s bid on any bundle Q to be the sum of its bids

on some two other non-overlapping bundles, q1 and q2, cannot achieve within 5% of the maximum

expected efficiency.

We will first show that, in such a mechanism, agent one cannot choose between the pairs of

outcomes where it wins q1 or q2, and Q or nothing, since the channels connected to these outcomes

overlap in the fashion described in Lemma 7. Let A be an outcome under which agent one is allocated

bundle q1, let B be an outcome under which it is allocated q2, C for Q and D for nothing (also

let SA, SB , SC , and SD be the sets of channels connected to those outcomes for the agent). Since

agent one’s bid on Q equals the sum of its bid on q1 and q2, we have that SC = SA ∪ SB , and its

bid for the outcome where it wins nothing is always 0, so we have SD = ∅. These sets of channels

meet the conditions of Lemma 7.

(
SA \ SC = SB \ SD

)
and

(
SC \ SA = SD \ SB

)
(
SA \ (SA ∪ SB) = ∅ \ SB

)
and

(
(SA ∪ SB) \ SA = SB \ ∅)

Now, consider the following example with two agents, where each agent has two equally likely

types: a “substitutable” type and a “complementary” type. The agents’ valuations for the bundles

q1, q2, and Q are given below. Valuations for all other bundles, including the empty bundle, are

assumed to be 0 or their minimum possible value. Since the items other than those in q1, q2, and

Q provide no utility to either agent, and the bids for these items cannot affect how the items in q1,

q2, and Q are allocated, we ignore the additional items in the rest of our proof.

Agent 1





type q1 q2 Q

ts1 0.5 0.5 0.5

tc1 0 0 0.75

Agent 2





type q1 q2 Q

ts2 0 0.5 0.5

tc2 0.75 0 1

Under the valuations given above, the total social welfare of each outcome is given by the following

table (the welfare of the most efficient outcome associated with each joint type is shown in bold).
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Outcome ts1, t
s
2 ts1, t

c
2 tc1, t

s
2 tc1, t

c
2

A : {q1, q2} 1 0.5 0.5 0

B : {q2, q1} 0.5 1.25 0 0.75

C : {Q, ∅} 0.5 0.5 0.75 0.75

D : {∅, Q} 0.5 1 0.5 1

The maximum expected efficiency, E[E∗], is then given by the following. We drop the t1 and

t2 notation in favor of shorthand where types are simply referred to as s or c. Psc denotes the

probability of agent one having type s and agent two having type c.

E[E∗] = PssW (A, {s, s}) + PscW (B, {s, c}) + PcsW (C, {c, s}) + PccW (D, {c, c})
=

1
4
× 1 +

1
4
× 1.25 +

1
4
× 0.75 +

1
4
× 1 = 1.

Since agent one cannot choose between the pairs of outcomes {A, B} and {C, D}, the mechanism

cannot achieve the expected efficiency of the optimal allocation for some combination of types. In

the best case, it will assign the second best outcome for one of the {s, c}, {c, s, }, or {c, c} types,

which will cost at least 6.25% in expected efficiency.
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